Methods Of Performing A Dispatched Consumer-To-Store Logistics Operation For An Item Being Replaced Using A Modular Autonomous Bot Apparatus Assembly And A Dispatch Server
Methods are described that perform a dispatched consumer-to-store return or swap logistics operation for an item being replaced using a modular autonomous bot apparatus assembly and a dispatch server. The method begins with receiving a return operation dispatch command that includes identifier information, transport parameters, and designated pickup information for the item being replaced/returned, along with authentication information related to an authorized supplier of the item being replaced. Modular components of the bot apparatus are verified to be compatible with the dispatched logistics operation. The MAM then autonomously causes the bot apparatus to move to the designated pickup location, notifies the authorized supplier of an approaching pickup, receives supplier authorization input to permissively allow access to a payload area within the bot apparatus, monitors loading as the item being replaced is received along with return documentation, and then autonomously causes movement of the bot apparatus back to the origin location.
Modular Multiple Mobility Base Assembly Apparatus For Transporting An Item Being Shipped
A modular multiple mobility base assembly apparatus is described for transporting an item being shipped having a base adapter plate and two cooperating and coordinating modular mobility bases that are each coupled to the bottom of the base adapter plate and collectively support the base adapter plate. One of the modular mobility bases operations a master autonomous mobile vehicle, while the other operates as a slave autonomous mobile vehicle that receives propulsion and steering control signals from the master while providing feedback sensor data to the master for use in coordinated and cooperative movement of the assembly apparatus. Each of the modular mobility bases also including respective wireless transceivers through which at least the control signals and sensor data are provided between mobility base units.
Modular Mobility Base For A Modular Autonomous Logistics Vehicle Transport Apparatus
A modular mobility base for a modular autonomous bot apparatus transporting an item being shipped including a mobile base platform, a component alignment interface, a mobility controller, a propulsion and steering system, and sensors. The component alignment interface provides an alignment channel into which another modular component can be placed and secured on the platform. The mobility controller generates propulsion control signals for controlling speed of the modular mobility base and steering control signals for navigation of the modular mobility base. The propulsion system is connected to the platform and responsive to the propulsion control signal. The steering system is connected to the mobile base platform and is responsive to the steering control signal to cause changes to directional movement of the modular mobility base. The sensors are disposed on the platform provide feedback sensor data to the mobility controller about a condition of the modular mobility base.
Modular Auxiliary Power Module For A Modular Autonomous Bot Apparatus That Transports An Item Being Shipped
A modular auxiliary power module is described for a modular autonomous bot apparatus that transports an item being shipped. The modular auxiliary power module includes a base adapter platform, a cargo door, an auxiliary power source, and an output power outlet disposed on the base adapter platform as part of a modular component electronics interface. A top side of the base adapter platform has a cargo support area configured to support the item being shipped. Interlocking alignment interfaces (such as channels or latches) are on the top and bottom of the platform. The cargo door is movably attached to and extending from an edge of the base adapter platform, and the output power outlet is coupled to the auxiliary power source and provides access to power for other components of the modular autonomous bot apparatus from the auxiliary power source.
Modular Autonomous Bot Apparatus Assembly For Transporting An Item Being Shipped
A modular autonomous bot apparatus assembly is described for transporting an item being shipped. The assembly includes a modular mobility base having propulsion, steering, sensors for collision avoidance, and suspension actuators; a modular auxiliary power module with a power source and cargo door; a modular cargo storage system with folding structural walls and a latching system; and a modular mobile autonomy module that covers the cargo storage system and provides human interaction interfaces, externals sensors, a wireless interface, and an autonomous controller with interfacing circuitry coupled to the human interaction interfaces and sensors on the mobile autonomy module. The assembly has a power and data transport bus that provides a communication and power conduit across the different modular components. A method for on-demand assembly of such a bot apparatus is further described with steps for authenticating the different modular components during assembly.
Modular Autonomous Bot Apparatus Assembly For Transporting An Item Being Shipped
A modular autonomous bot apparatus assembly is described for transporting an item being shipped. The assembly includes a modular mobility base having propulsion, steering, sensors for collision avoidance, and suspension actuators; a modular auxiliary power module with a power source and cargo door; a modular cargo storage system with folding structural walls and a latching system; and a modular mobile autonomy module that covers the cargo storage system and provides human interaction interfaces, externals sensors, a wireless interface, and an autonomous controller with interfacing circuitry coupled to the human interaction interfaces and sensors on the mobile autonomy module. The assembly has a power and data transport bus that provides a communication and power conduit across the different modular components. A method for on-demand assembly of such a bot apparatus is further described with steps for authenticating the different modular components during assembly.
Modular Mobility Base For A Modular Autonomous Logistics Vehicle Transport Apparatus
A modular mobility base for a modular autonomous bot apparatus transporting an item being shipped including a mobile base platform, a component alignment interface, a mobility controller, a propulsion and steering system, and sensors. The component alignment interface provides an alignment channel into which another modular component can be placed and secured on the platform. The mobility controller generates propulsion control signals for controlling speed of the modular mobility base and steering control signals for navigation of the modular mobility base. The propulsion system is connected to the platform and responsive to the propulsion control signal. The steering system is connected to the mobile base platform and is responsive to the steering control signal to cause changes to directional movement of the modular mobility base. The sensors are disposed on the platform provide feedback sensor data to the mobility controller about a condition of the modular mobility base.
Detachable Modular Mobile Autonomy Control Module For A Modular Autonomous Bot Apparatus That Transports An Item Being Shipped
- Collierville TN, US Frank Mayfield - Collierville TN, US Daniel Gates - Memphis TN, US
International Classification:
B25J 9/08 B25J 19/02 B25J 5/00 G06Q 10/08
Abstract:
A detachable modular mobile autonomy module (MAM) for a modular autonomous bot apparatus includes a housing with latching points, an autonomous controller, location circuitry, external sensors monitoring an environment external to the MAM and providing sensor data to the controller, multi-element light panels on the housing driven by the controller; and a modular component power and data bus. The bus has a bottom side modular component electronics interface disposed on the housing that mates to a corresponding interface on another proximately-attached modular component of the bot. The MAM receives sensor data from the external sensors, receives outside sensor data from additional sensors disposed on a mobility unit of the bot, generates steering and propulsion control output signals based on location data from the location circuitry, external sensor data, mobility unit sensor data, and destination information data maintained by the controller, and generates transport and delivery information for the light panels.
Harrison Energy Partners Trane Arkansas. Willaim A. Harrison. Inc. Air Conditioning Contractors & Systems. Air conditioning & Heating Contractors - Commercial
1501 Westpark Drive, 10, Little Rock, AR 72204 (501)6610621, (501)6668564