The invention is directed at systems and methods which provide for effective cleaning and drying of vehicles of different shapes and sizes. The invention in one example includes a vehicle washing apparatus comprising a conveyor system to move a vehicle along a path, and a bridge assembly supported above a vehicle and moveable along the length thereof. At least one trolley assembly is operatively supported by the bridge assembly and is moveable in a direction generally transverse to the movement of the bridge assembly. At least one cleaning arm assembly for delivering cleaning fluid to or for brushing the surface of a vehicle is operatively supported by the at least one trolley assembly or bridge. The cleaning arm assembly is moveable with the bridge assembly along the length of the vehicle, and transversely with the at least one trolley assembly to adjust the location of the cleaning arm relative to the vehicle, wherein the bridge assembly moves in association with movement of the vehicle to position the cleaning arm assembly adjacent at least a portion of the front, sides and rear of the vehicle as it moves along the path. A variable impact or patterning spray arm or drying system is also provided.
The invention is directed at systems and methods which provide for effective cleaning and drying of vehicles of different shapes and sizes. The invention in one example includes a vehicle washing apparatus comprising a conveyor system to move a vehicle along a path, and a bridge assembly supported above a vehicle and moveable along the length thereof. At least one trolley assembly is operatively supported by the bridge assembly and is moveable in a direction generally transverse to the movement of the bridge assembly. At least one cleaning arm assembly for delivering cleaning fluid to or for brushing the surface of a vehicle is operatively supported by the at least one trolley assembly or bridge. The cleaning arm assembly is moveable with the bridge assembly along the length of the vehicle, and transversely with the at least one trolley assembly to adjust the location of the cleaning arm relative to the vehicle, wherein the bridge assembly moves in association with movement of the vehicle to position the cleaning arm assembly adjacent at least a portion of the front, sides and rear of the vehicle as it moves along the path. A variable impact or patterning spray arm or drying system is also provided.
The invention is directed at systems and methods which provide for effective cleaning and drying of vehicles of different shapes and sizes. The invention in one example includes a vehicle washing apparatus comprising a conveyor system to move a vehicle along a path, and a bridge assembly supported above a vehicle and moveable along the length thereof. At least one trolley assembly is operatively supported by the bridge assembly and is moveable in a direction generally transverse to the movement of the bridge assembly. At least one cleaning arm assembly for delivering cleaning fluid to or for brushing the surface of a vehicle is operatively supported by the at least one trolley assembly or bridge. The cleaning arm assembly is moveable with the bridge assembly along the length of the vehicle, and transversely with the at least one trolley assembly to adjust the location of the cleaning arm relative to the vehicle, wherein the bridge assembly moves in association with movement of the vehicle to position the cleaning arm assembly adjacent at least a portion of the front, sides and rear of the vehicle as it moves along the path. A variable impact or patterning spray arm or drying system is also provided.
The invention is directed at systems and methods which provide for effective cleaning and drying of vehicles of different shapes and sizes. The invention in one example includes a vehicle washing apparatus comprising a conveyor system to move a vehicle along a path, and a bridge assembly supported above a vehicle and moveable along the length thereof. At least one trolley assembly is operatively supported by the bridge assembly and is moveable in a direction generally transverse to the movement of the bridge assembly. At least one cleaning arm assembly for delivering cleaning fluid to or for brushing the surface of a vehicle is operatively supported by the at least one trolley assembly or bridge. The cleaning arm assembly is moveable with the bridge assembly along the length of the vehicle, and transversely with the at least one trolley assembly to adjust the location of the cleaning arm relative to the vehicle, wherein the bridge assembly moves in association with movement of the vehicle to position the cleaning arm assembly adjacent at least a portion of the front, sides and rear of the vehicle as it moves along the path. A variable impact or patterning spray arm or drying system is also provided.
A wash oscillator for use in providing high impact wash and rinse action on a lateral surface of a vehicle in an automatic wash facility. The wash oscillator comprises a support structure positioned on a support surface of the wash facility and a motor, having a rotatable output shaft, fixedly attached to the support structure. The oscillator further comprises a spray bar having a plurality of spray nozzles for providing perpendicular impact of washing and rinsing agents onto a lateral surface of the vehicle. The spray bar is pivotally mounted to the support structure via attachment to a pivot block which pivots about an axis of a hinge pin which is rotatably supported by pillow blocks mounted on a support structure. A linkage mechanism connects the output shaft of the motor with the pivot block so as to convert rotary motion of the shaft into an oscillating pivoting motion of the spray bar about the hinge pin axis. The linkage mechanism includes a spring linkage arm having a spring element which is always loaded in compression and which damps the oscillating pivoting motion of the spray bar so as to reduce shock loads imparted at the upstroke and downstroke positions of the spray bar, thereby enhancing the fatigue life of the bearings included in the pivotal mounting mechanism.
A device for washing automobiles, vans, and other vehicles is shown which comprises a movable spray bar with high velocity spray nozzles mounted thereon, as well as associated supporting structure, and motion inducing means. In the washing process, the lateral profile of the vehicle is tracked by an array of photoelectric cell detectors mounted on the spray bar. Based on electronic output signals from the detectors, which are processed by a preprogrammed logic control unit and relayed to the motion inducing means, the spray bar is maintained at a predetermined height above, and the nozzles at a constant angle to, the vehicle surfaces being washed.
A device for washing automobiles, vans, and other vehicles is shown which comprises a movable spray bar with high velocity spray nozzles mounted thereon, as well as associated supporting structure, and motion inducing means. In the washing process, the lateral profile of the vehicle is tracked by an array of photoelectric cell detectors mounted on the spray bar. Based on electronic output signals from the detectors, which are processed by a preprogrammed logic control unit and relayed to the motion inducing means, the spray bar is maintained at a predetermined height above, and the nozzles at a constant angle to, the vehicle surfaces being washed.
A device for washing automobiles, vans, and other vehicles is shown which comprises a movable spray bar with high velocity spray nozzles mounted thereon, as well as associated supporting structure, and motion inducing means, In the washing process, the lateral profile of the vehicle is tracked by an array of photoelectric cell detectors mounted on the spray bar. Based on electronic output signals from the detectors, which are processed by a preprogrammed logic control unit and relayed to the motion inducing means, the spray bar is maintained at a predetermined height above, and the nozzles at a constant angle to, the vehicle surfaces being washed.
Name / Title
Company / Classification
Phones & Addresses
Thomas A Petit
PETIT SUPPLY & MFG. CO
Barberton, OH
Thomas J. Petit President
Petit Auto Wash Inc Carwash Whol Service Establishment Equipment · Car Washes
Cairneagle Associates - London since 2012
Consultant
Autorité de la concurrence 2011 - 2011
Economist
UBS Investment Bank - London, United Kingdom 2008 - 2008
Analyst
Education:
Sciences Po Paris 2010 - 2012
Master's in International Economic Policy
University of Cambridge 2006 - 2009
BA (Hons), Mathematics
Skills:
Strategy Management Consulting Business Strategy Financial Modeling Emerging Markets