An intrusion deterrence accessory device for an enclosure having an original door or panel for limiting access to the enclosure includes a replacement door or panel for the enclosure, the door or panel being directly substitutable for the original door or panel; a dispenser for a deterrence substance operably mounted to the replacement door or panel; and an intrusion sensor operably mounted to the replacement door, wherein the dispenser is operable to dispense the deterrence substance when an intrusion is sensed by the intrusion sensor.
Navigation System Creating A Route Based On Certain Criteria Along The Route
This invention includes a method of creating a navigation route based on certain criteria along several possible routes. One such criterion can be property values along routes. A navigation system using such a method can operate either off-line, with property values retrieved from a database previously, or on-line, with real-time retrieval of property values from a database. The retrieval is done using a communication interface. The system can include a GPS unit for determining the present location of the system, and the system with such a GPS unit can create a property-value-based navigation route from the present location to the destination without the driver being required to know the present location. Other criteria can include values of cars, boats, or airplanes registered at locations along routes. Routes along which are residences of criminals can be avoided.
Anti-Ballistic Barriers And Methods Of Manufacture
Laminates and their process of manufacture, with the laminates made with anti-ballistic materials, such as woven and unwoven fabrics. The laminates are provided with different structures, materials, bondings, and other features, and example methods of manufacturing those laminates efficiently and in mass quantities. The method of production is a process of laminating individual flexible sheets including anti-ballistic material (which may be of woven or unwoven cloth or thin solid sheets or foils comprised of one or more light-weight anti-ballistic materials) into a flexible laminate for use to protect people or spaces from ballistic objects such as bullets and shrapnel from weapons and other moderate to high-kinetic energy objects. Also, an anti-ballistic protection system for protecting an interior space in a building. The ballistic barrier includes the laminated material having a plurality of layers of lightweight, flexible, ballistic resistant material such as woven sheets which are secured together into the laminate using a adhesive, heat weld, or stitching. The ballistic barrier is configured to be in a compact retracted state which can be deployed to provide a protective state to protect against kinetic ballistic projectiles.
A method of using an anti-ballistic protection system for protecting an interior space in a building. The ballistic barrier includes a laminated material having a plurality of layers of lightweight, flexible, ballistic resistant material such as woven sheets which are secured together into the laminate using a adhesive, heat weld, or stitching. The ballistic barrier is configured to be in a compact retracted state which can be deployed to provide a protective state to protect against kinetic ballistic projectiles. The system may include an automated control system operably configured to change the state of the ballistic barrier from the retracted state to the protective deployed state, such that upon sensing a threatening event or condition triggers a transition from the retracted state to the deployed protective state such that in the protective state. The ballistic barrier in the deployed state is configured to be resistant to penetration by high-speed ballistic projectiles such as a bullet fired from a gun or a shrapnel from a bomb to protect the interior space.
An anti-ballistic protection system for protecting an interior space in a building. The ballistic barrier includes a laminated material having a plurality of layers of lightweight, flexible, ballistic resistant material such as woven sheets which are secured together into the laminate using a adhesive, heat weld, or stitching. The ballistic barrier is configured to be in a compact retracted state which can be deployed to provide a protective state to protect against kinetic ballistic projectiles. The system may include an automated control system operably configured to change the state of the ballistic barrier from the retracted state to the protective deployed state, such that upon sensing a threatening event or condition triggers a transition from the retracted state to the deployed protective state such that in the protective state. The ballistic barrier in the deployed state is configured to be resistant to penetration by high-speed ballistic projectiles such as a bullet fired from a gun or a shrapnel from a bomb to protect the interior space.
A method of using an anti-ballistic protection system for protecting an interior space in a building. The ballistic barrier includes a laminated material having a plurality of layers of lightweight, flexible, ballistic resistant material such as woven sheets which are secured together into the laminate using a adhesive, heat weld, or stitching. The ballistic barrier is configured to be in a compact retracted state which can be deployed to provide a protective state to protect against kinetic ballistic projectiles. The system may include an automated control system operably configured to change the state of the ballistic barrier from the retracted state to the protective deployed state, such that upon sensing a threatening event or condition triggers a transition from the retracted state to the deployed protective state such that in the protective state. The ballistic barrier in the deployed state is configured to be resistant to penetration by high-speed ballistic projectiles such as a bullet fired from a gun or a shrapnel from a bomb to protect the interior space.
An kinetic object protection system for protecting a space in a building or vehicle comprising a protective barrier including one or more sheets of a laminated material having a plurality of layers of lightweight, flexible, ballistic resistant material such as woven sheets, nets, or mesh which are secured together using a glue, heat weld, or stitching. The system may include an automated control system operably configured to cause a change in state of the barrier from a retracted state to a protective deployed state, which may include a sensing system operably configured to detect a threatening event, wherein the sensing system upon sensing the threatening event triggers the barrier to transition from the retracted state to the deployed protective state such that in the protective state, the barriers are adapted to be resistant to penetration by the kinetic objects such as vehicles.
An anti-ballistic protection system for protecting a space in a building or vehicle comprising a protective barrier including one or more sheets of a laminated material having a plurality of layers of lightweight, flexible, ballistic resistant material such as woven sheets which are secured together using a glue, heat weld, or stitching. The system may include an automated control system operably configured to cause a change in state of the barrier from a retracted state to a protective deployed state, which may include a sensing system operably configured to detect a threatening event, wherein the sensing system upon sensing the threatening event triggers the barrier to transition from the retracted state to the deployed protective state such that in the protective state, the barriers are adapted to be resistant to penetration by high-speed ballistic objects such as bullets.