A colored DC plasma display panel having a plurality of sub-pixels organized in a matrix configuration. The color DC plasma display panel includes a first plate having a first substrate. A plurality of rows of cathodes are formed on the first substrate which include a plurality of holes therein spaced along each cathode row; preferably one hole for each sub-pixel. A dielectric layer covers the cathode rows and the substrate, and a plurality of holes are formed in the dielectric layer which align with the holes in the cathodes. The color DC plasma display panel further includes a second plate having a second substrate and a pluarility of rows of anodes formed on and extending along the length of the second substrate. The anodes reside in channels created between a pluarality of rows of barrier ribs formed on the second substrate. The plasma display panel is formed by combining the first plate and the second plate so that the anodes rows on the second plate run substantially orthogonal to the cathode rows on the first plate.
Lean Direct Wall Fuel Injection Method And Devices
Kyung J. Choi - Wyndmoor PA Robert Tacina - Brunswick OH
International Classification:
F02C 100
US Classification:
60740
Abstract:
A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50. degree. to about 60. degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0. 05 to about 0. 12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air.
Lean Direct Wall Fuel Injection Method And Devices
Kyung J. Choi - Glenside PA Robert Tacina - Brunswick OH
International Classification:
F02C 100
US Classification:
60 3906
Abstract:
A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50. degree. to about 60. degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0. 05 to about 0. 12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.
Dc Plasma Display Panel And Methods For Making Same
A colored DC plasma display panel having a plurality of sub-pixels organized in a matrix configuration. The color DC plasma display panel includes a first plate having a first substrate. A plurality of rows of cathodes are formed on the first substrate which include a plurality of holes therein spaced along each cathode row; preferably one hole for each sub-pixel. A dielectric layer covers the cathode rows and the substrate, and a plurality of holes are formed in the dielectric layer which align with the holes in the cathodes. The color DC plasma display panel further includes a second plate having a second substrate and a pluarility of rows of anodes formed on and extending along the length of the second substrate. The anodes reside in channels created between a pluarlity of rows of barrier ribs formed on the second substrate. The plasma display panel is formed by combining the first plate and the second plate so that the anodes rows on the second plate run substantially orthogonal to the cathode rows on the first plate.