Abstract:
An AC-to-DC converter with PFC or without PFC generates an output constant voltage at any predetermined value (no matter less or more than input line peak voltage, or even equal to input line peak voltage) with an input line AC voltage with wide range (Typical sinusoidal 110 VAC, 60 Hz or 220 VAC, 50 Hz). It is mainly used as power supply for lamp. Previous power supply for lamp has low frequency component or high frequency component. (1) Low frequency light cause eyes pupil and crystalline lens will adjust 60 times, 120 or many times per second to cause eyes tired. Pupil open wide and crystalline lens adjust to collect more light to focus on retina for seeing clearly at weak light while pupil open narrow and crystalline lens adjust to collect less light to focus on retina at strong light to prevent retina from strong light harm and hurt. In the long run, muscles to control pupil and crystalline lens become very tired and become flabby. Then the muscle can't adjust pupil and crystalline according to distance and brightness so that myopia is caused. (2) High frequency voltage causes lamp brightness changes too fast. Eyes can not adjust fast enough to follow the brightness change of lamp for high frequency voltage. But high frequency large current on the secondary cause high EMI that has risk to harm people's health. High frequency light causes EMI issue. Peoples' eyes can't keep up with high frequency light. Peak strong light shine on the retina for pupil can't shrink at high frequency light. In the long run, retina will be harmed and affect eyesight is affected, cornea dryness or crystalline lens opacity is caused. My invention of power supply lamp has only DC constant voltage on lamp. Lamp's brightness is constant and has no low frequency or high frequency component Thus peoples' eyes and health are protected to maximum extent. The output voltage is regulated at predetermined DC constant value by feedback. You can adjust feedback potentiometer value to set output voltage. Potentiometer and resistor voltage divider with auxiliary winding, (opto-coupler, digital isolator or direct feedback) compose the dimming feedback circuit. It is convenient to adjust the brightness of lamp for eyes' comfort by adjusting the potentiometer resistance value. My invention can be used directly on second category lamp that doesn't need high voltage with ballast to start the lamp. Most of them use heat generated by filament or diode etc to create light. Such as Halogen, Incandescent, LED, PAR lamp, miniature sealed beam lamp, Projection lamp, automotive lamp, some stage and studio lamp, DC fluorescent lamp etc. The converter realized pulse-by-pulse or other current limit protection by sense the current sense resistor or signal transformer. One stage DC sinusoidal to DC constant converter can be implemented by all kinds of topologies other than the following topologies as long as they can convert DC sinusoidal voltage to DC constant voltage. Buck, Boost, Buck-boost, Noninverting buck-boost ,H-Bridge, Watkins-Johnson, Current-fed bridge, Inverse of Watkins-Johnson, Cuk, SEPIC, Inverse of SEPIC, Buck square, full bridge, half bridge, Forward, Two-transistor Forward, Push-pull, Flyback, Push-pull converter basedon Watkins-Johnson, Isolated SEPIC, Isolated Inverse SEPIC, Isolated Cuk, Two-transistor Flyback etc One stage AC to DC converter can be realized by discrete components without controller , active startup circuit, feedback circuit or sample circuit. Main switch and active startup circuit can be integrated in IC controller. The AC to DC converter is not used only for lamp. It is can also be used for any device requires DC power supply in all the industrial areas. (Telecommunication, Storage, Personal computer, cell phone power supply and charger, video game etc) For example, Bus AC to DC converter, PFC converter, PFC converter for lighting Computer power supply, Monitor power supply, notebook adapter, LCD TV, AC/DC adapter, adjusted voltage charger, Power tool charger, Electronic ballast, Video game power supply etc.