Nirmala Ramanujam - Philadelphia PA Michele Follen Mitchell - Houston TX
Assignee:
Board of Regents, The University of Texas System - Austin TX
International Classification:
A61B 600
US Classification:
600475
Abstract:
Early diagnosis of cervical precancer is an important clinical goal. Optical spectroscopy has been suggested as a new technique to overcome limitations of current clinical practice. Herein, NIR Raman spectroscopy is applied to the diagnosis of cervical precancers. Using algorithms based on empirically selected peak intensities, ratios of peak intensities and a combination of Principal Component Analysis (PCA) for data reduction and Fisher Discriminant Analysis (FDA), normal tissues, inflammation and metaplasia were distinguishable from low grade and high grade precancers. The primary contributors to the tissue spectra appear to be collagen, nucleic acids, phospholipids and glucose 1-phosphate. These results suggest that near infrared Raman spectroscopy can be used effectively for cervical precancer diagnosis.
Diagnostic Method And Apparatus For Cervical Squamous Intraepithelial Lesions In Vitro And In Vivo Using Fluorescence Spectroscopy
Nirmala Ramanujam - Philadelphia PA Michele Follen Mitchell - Houston TX
Assignee:
Board of Regents, the University of Texas System - Austin TX
International Classification:
G01N 2164 A61B 500
US Classification:
435172
Abstract:
The present invention involves the use of fluorescence spectroscopy in the diagnosis of cervical cancer and precancer. Using multiple illumination wavelengths, it is possible to (i) differentiate normal or inflamed tissue from squamous intraepithelial lesions (SILs) and (ii) to differentiate high grade SILs from non-high grade SILs. The detection may be performed in vitro or in vivo. Multivariate statistical analysis was employed to reduce the number of fluorescence excitation-emission wavelength pairs needed to re-develop algorithms that demonstrate a minimum decrease in classification accuracy. Fluorescence at excitation-emission wavelength pairs was used to redevelop and test screening and diagnostic algorithms that have a similar classification accuracy to those that employ fluorescence emission spectra at three excitation wavelengths. Both the full-parameter and reduced-parameter screening algorithms discriminate between SILs and non-SILs with a similar specificity and a substantially improved sensitivity relative to Pap smear screening and differentiate high grade SILs from non-high grade SILs.