Dr. Trinh graduated from the University of Texas Medical School at Houston in 1993. She works in Katy, TX and specializes in Family Medicine. Dr. Trinh is affiliated with Houston Methodist St Catherine Hospital and Memorial Hermann Katy Hospital.
Rockwell International Corporation - Seal Beach CA
International Classification:
H04B 126
US Classification:
455326
Abstract:
A passive uniplanar double-balanced star RF mixer, comprising a substantially planar support substrate with a conductive layer of material disposed on one side and a slotline and first, second, and third coplanar waveguides formed therein which are configured to accommodate different frequencies. The first waveguide is bifurcated on one end into two waveguide branches which form first and second waveguide terminations each physically coupled to one end of the slotline. The second waveguide is electrically coupled to the first waveguide at a location spaced apart from the branches. The third waveguide is electrically coupled to the slotline at a position located approximately equi-distant from the slotline ends. A first grounding element is connected to the grounds of the first and third waveguides, and is positioned adjacent to the first branch termination. A conductive surface is enclosed by the waveguide branches and the slotline.
Rockwell International Corporation - Seal Beach CA
International Classification:
H04B 126 H01P 510
US Classification:
455327
Abstract:
A passive uniplanar double-balanced RF mixing apparatus, comprising a planar support substrate with first and second conductive layers disposed on first and second sides, and first and second linear slotlines having open terminations on a first end thereof formed in the first conductive layer. First and second coplanar waveguides are also formed in the first conductive layer with each having one end electrically coupled to first and of said first and second slotlines, respectively. A first balun comprises the first coplanar waveguide connection to the first slotline, and a second balun comprises the second coplanar waveguide connection the second slotline. An isolation gap formed in the first conductive layer adjacent to and between the first and second slotlines provided electrical isolation between the first and second baluns and waveguides for RF-toLO isolation. A transfer element, in the form of a third coplanar waveguide or a conductive via, is electrically connected to one of the baluns adjacent to, but removed a predetermined distance from, the associated slotline for transferring intermediate oscillator frequency signals. A folded diode ring is connected between the slotlines and to the first and second baluns.
Trang N. Trinh - Cypress CA H. John Kuno - Rancho Palos Verdes CA
Assignee:
Hughes Aircraft Company - Los Angeles CA
International Classification:
H01Q 138
US Classification:
343700MS
Abstract:
An antenna arrangement is disclosed for radiating and receiving circularly polarized radiation. A first antenna array having parallel stripline conductors is disposed on the top surface of a dielectric substrate. The stripline conductors have radiating tabs protruding outwardly therefrom in a direction about 45 degrees from the stripline conductors. A second antenna array having a second plurality of stripline conductor is disposed on the substrate. The second stripline conductors are interdigitated with the first stripline conductors. The second stripline conductors also have a plurality of outwardly protruding radiating elements which form about a 90 degree angle with the first radiating elements. The first and second antenna arrays are fed with two independent signals about 90 degrees apart and will independently radiate a horizontally linearly polarized wave and a vertically linearly polarized wave respectively, which becomes a circularly polarized wave at far field. The interdigitated antenna pattern allows a compact antenna arrangement to be fabricated while lessening the tendency of adjacent antennas to cross-couple and distort the transmitted signal.
Trang N. Trinh - Cypress CA Elroy C. Smith - La Habra CA
Assignee:
Rockwell International Corporation - Seal Beach
International Classification:
H01P 512 H05K 714
US Classification:
333128
Abstract:
A method and apparatus are disclosed for manufacturing large Monolithic Microwave Integrated Circuit (MMIC) arrays. MMIC elements are manufactured on a substrate to form a MMIC module and first conductive vias are created in the substrate at locations corresponding to contact points for the MMIC. The MMIC module is then secured to a multi-layered ceramic backplate structure for physical rigidity and electrical interconnection. The MMIC module uses a conductive material, such as chrome, to fill or coat the vias to provide electrical contact with MMIC contact pads. Each layer of the multi-layered backplate structure has an electrical interconnection circuit or network formed thereon, and conductive vias extending through the layer at locations corresponding to preselected vias in adjacent layers and electrical contacts for MMIC modules. In further aspects of the invention, portions of the backplate also support phase control integrated circuit logic elements or devices which are electrically connected to the MMICs through the interconnection circuits to reduce off-structure connections. The backplate uses a multi-layer hybrid technique in conjunction with the via holes on the MMIC substrate to form a low cost and reliable feeding network for a large MMIC array, such as a phased-array.