A monitoring system includes one or more monitoring devices, positioned in sewer manholes, storm drains, etc. , and a remote monitoring station that communicates wirelessly therewith. The monitoring device may be an integrated unit, including sensors, a two-way telemetry unit, a power supply, a processor, and supporting hardware, all located in an enclosed, waterproof housing. The monitoring device is placed within a manhole cavity to obtain depth (e. g. , water level) measurements and report the measurements back to the remote monitoring station, which analyzes the data and responds to alert messages when a dangerous water level is detected. The sample and reporting rates of the device, as well as the water level threshold values, may be remotely programmable via commands transmitted from the remote monitoring station. An additional sensor may monitor the manhole cover for security purposes. Additional external monitoring instruments may be connected to the device, which relays data therefrom to the remote monitoring station.
A monitoring system includes one or more monitoring devices, positioned in sewer manholes, storm drains, etc. , and a remote monitoring station that communicates wirelessly therewith. The monitoring device may be an integrated unit, including sensors, a two-way telemetry unit, a power supply, a processor, and supporting hardware, all located in an enclosed, waterproof housing. The monitoring device is placed within a manhole cavity to obtain depth (e. g. , water level) measurements and report the measurements back to the remote monitoring station, which analyzes the data and responds to alert messages when a dangerous water level is detected. The sample and reporting rates of the device, as well as the water level threshold values, may be remotely programmable via commands transmitted from the remote monitoring station. An additional sensor may monitor the manhole cover for security purposes. Additional external monitoring instruments may be connected to the device, which relays data therefrom to the remote monitoring station.
Roy Kosuge - Century City CA, US Pat Crane - Century City CA, US Alan Pittman - Oak Park CA, US John Maris - Century City CA, US
Assignee:
Aeromesh Corporation - Century City CA
International Classification:
G08B 21/00
US Classification:
340612
Abstract:
A monitoring system includes one or more monitoring devices, positioned in sewer manholes, storm drains, etc. , and a remote monitoring station that communicates wirelessly therewith. The monitoring device may be an integrated unit, including sensors, a two-way telemetry unit, a power supply, a processor, and supporting hardware, all located in an enclosed, waterproof housing. The monitoring device is placed within a manhole cavity to obtain depth (e. g. , water level) measurements, images, and other data, and report the measurements back to the remote monitoring station, which analyzes the data and responds to alert messages when a dangerous water level is detected. An additional sensor may monitor the manhole cover for security purposes. A distributed mesh network of wireless nodes may be used to relay communications from the monitoring devices along alternative paths, through bridge nodes that may connect to a public wireless or cellular network.
Roy Kosuge - Century City CA, US Pat Crane - Century City CA, US Alan Pittman - Oak Park CA, US John Maris - Century City CA, US
Assignee:
Aeromesh Corporation - Century City CA
International Classification:
G08B 21/00
US Classification:
340612
Abstract:
A monitoring system includes one or more monitoring devices, positioned in sewer manholes, storm drains, etc. , and a remote monitoring station that communicates wirelessly therewith. The monitoring device may be an integrated unit, including sensors, a two-way telemetry unit, a power supply, a processor, and supporting hardware, all located in an enclosed, waterproof housing. The monitoring device is placed within a manhole cavity to obtain depth (e. g. , water level) measurements, images, and other data, and report the measurements back to the remote monitoring station, which analyzes the data and responds to alert messages when a dangerous water level is detected. An additional sensor may monitor the manhole cover for security purposes. A distributed mesh network of wireless nodes may be used to relay communications from the monitoring devices along alternative paths, through bridge nodes that may connect to a public wireless or cellular network.
A protective end cap for a water ski tow line handle comprised of a sleeve and a cup adapted to snap over each end of the handle and cover the water ski tow line. The cup is adapted to cover the end of the handle including the portion of the tow line encircling the handle.
A water ski tow line constructed to provide anti-rotation of the tow line handle. The water ski tow line has a handle with holes at each end traversing the handle. A tow line is attached to each end of the handle by passing the line around the handle and through the holes traversing the handle such that two lines are provided extending from tangent points on opposite sides of the handle. These two lines effectively provide opposing torques on either side of the handle, preventing rotation of the handle during use. The skier's hands are protected by end caps formed of a cup fitting over the end of the handle covering the rope, having a sheath extending away from the handle and covering the loop formed by the two lines. The two lines are then joined at a yoke forming a single tow line. A yoke protector is produced by a unique tool to cover and protect the yoke area of the water ski tow line.
A water ski tow line constructed to provide anti-rotation of the tow line handle. The water ski tow line has a handle with holes at each end traversing the handle. A tow line is attached to each end of the handle by passing the line around the handle and through the holes traversing the handle such that two lines are provided extending from tangent points on opposite sides of the handle. These two lines effectively provide opposing torques on either side of the handle, preventing rotation of the handle during use. The skier's hands are protected by end caps formed of a cup fitting over the end of the handle covering the rope, having a sheath extending away from the handle and covering the loop formed by the two lines. The two lines are then joined at a yoke forming a single tow line. A yoke protector is produced by a unique tool to cover and protect the yoke area of the water ski tow line.