An apparatus and method for controlling the brightness and luminance of a light, such as an LED. The embodiment may vary the brightness and luminance of the LED in a variety of ways to achieve a variety of effects. The exemplary embodiment may vary the rate at which the LED's luminance changes, such that an observer perceives the change in the LED's brightness to be smooth and linear as a function of time, regardless of the ambient light level. Changes to the LED's luminance may be time-constrained and/or constrained by a maximum or minimum rate of change.
An apparatus and method for controlling the brightness and luminance of a light, such as an LED. The embodiment may vary the brightness and luminance of the LED in a variety of ways to achieve a variety of effects. The exemplary embodiment may vary the rate at which the LED's luminance changes, such that an observer perceives the change in the LED's brightness to be smooth and linear as a function of time, regardless of the ambient light level. Changes to the LED's luminance may be time-constrained and/or constrained by a maximum or minimum rate of change.
An apparatus and method for controlling the brightness and luminance of a light, such as an LED. The embodiment may vary the brightness and luminance of the LED in a variety of ways to achieve a variety of effects. The exemplary embodiment may vary the rate at which the LED's luminance changes, such that an observer perceives the change in the LED's brightness to be smooth and linear as a function of time, regardless of the ambient light level. Changes to the LED's luminance may be time-constrained and/or constrained by a maximum or minimum rate of change.
Platform-Independent Thermal Management Of Components In Electronic Devices
Cheng P. Tan - Fremont CA, US Keith A. Cox - Campbell CA, US Robert B. Sexton - Sunnyvale CA, US Joseph J. Castro - San Jose CA, US Bryan R. Hoover - San Jose CA, US
Assignee:
APPLE INC. - Cupertino CA
International Classification:
G05D 23/19
US Classification:
700299
Abstract:
Some embodiments provide a system that manages the temperature of a component in an electronic device. During operation, the system receives, from the component, a temperature offset of the component and a thermal state boundary associated with the temperature offset. Next, the system uses the temperature offset and the thermal state boundary to control the temperature of the component.
An apparatus and method for controlling the brightness and luminance of a light, such as an LED. The embodiment may vary the brightness and luminance of the LED in a variety of ways to achieve a variety of effects. The exemplary embodiment may vary the rate at which the LED's luminance changes, such that an observer perceives the change in the LED's brightness to be smooth and linear as a function of time, regardless of the ambient light level. Changes to the LED's luminance may be time-constrained and/or constrained by a maximum or minimum rate of change.