Apparatuses, systems, and methods for Raman spectroscopy are described. In certain implementations, a spectrometer is provided. The spectrometer may include a plurality of optical elements, comprising an entrance aperture, a collimating element, a volume phase holographic grating, a focusing element, and a detector array. The plurality of optical elements are configured to transfer the light beam from the entrance aperture to the detector array with a high transfer efficiency over a preselected spectral band.
- Wuhan City, CN Siqi Cheng - Madison Heights MI, US Changhe Huang - Novi MI, US Thaddeus Schroeder - Rochester Hills MI, US Christopher Mark Thrush - Shelby Township MI, US
International Classification:
G01D 5/245
Abstract:
A differential angle sensor for measuring a differential angle between an input shaft and an output shaft includes a target assembly fixed to rotate with one of the shafts and a ring magnet with equidistantly spaced magnet segments fixed to rotate with the other one of the shafts. The target assembly includes four identical targets extending about the common axis parallel and axially spaced apart from one another, and each having a plurality of wedge-shaped teeth extending radially toward the ring magnet. A first magnetic field sensor is disposed between first and second targets for measuring a first magnetic field strength therebetween. A second magnetic field sensor is disposed between third and fourth targets for measuring a second magnetic field strength. The targets are all circumferentially offset relative to one another such that the magnetic field strengths each vary with the differential angle between the shafts and differently from one-another.
- Wuhan City, CN Siqi Cheng - Madison Heights MI, US Changhe Huang - Novi MI, US Thaddeus Schroeder - Rochester Hills MI, US Christopher Mark Thrush - Shelby Township MI, US
International Classification:
G01D 5/20
Abstract:
A torque and angular sensor includes a differential angle sensor to precisely measure a differential angle between an input shaft and an output shaft and an angular position sensor to measure the angle of at least one of the shafts over a full angular range. The differential angle sensor measures an output rotation angle of an output target and an input rotation angle of an input target using changing voltages in taps on the input and output coils, which each carry an AC excitation current and which are each inductively coupled with teeth on targets fixed to rotate with one of the shafts. Input shaft rotation angle region is combined with the input angular position as a rotation angle composite. A raw torque angle is determined based on the difference between the input and output rotation angles. Rotational and Linear compensation provides a high-precision torque angle.
Static Interferometer With Step-Style Reflective Element
- Detroit MI, US Changhe Huang - Novi MI, US Christopher M. Thrush - Shelby Township MI, US Michelle Brusatori - Sterling Heights MI, US
International Classification:
G01J 3/02 G01J 3/44 G01J 3/45
US Classification:
356328
Abstract:
An apparatus for performing Raman spectral analysis of a sample is described, comprising a coherent light source, an first optical chain to direct the coherent light to impinge on the sample, a second optical chain to direct the scattered light onto a diffraction grating, and a third optical chain to direct the diffracted light onto detection array. The diffraction grating is a stairstep with a metalized surface, and a plurality of metalized stripes on a flat surface is disposed in a direction orthogonal to the long dimension of the stairsteps. The region between the flat surface and the stairstep is transparent. The zeroth-order fringe is selected by a slit and directed onto camera. The resultant interferogram is Fourier transformed to produce a representation of the Raman spectrum.
Fourier-Transform Interferometer With Staircase Reflective Element
- Detroit MI, US Changhe Huang - Novi MI, US Christopher M. Thrush - Shelby Township MI, US Michelle A. Brusatori - Sterling Heights MI, US
Assignee:
WAYNE STATE UNIVERSITY - Detroit MI
International Classification:
G01J 3/44 G01J 3/18
US Classification:
356301
Abstract:
An apparatus for performing Raman spectral analysis of a sample is described, comprising a coherent light source, an first optical chain to direct the coherent light to impinge on the sample, a second optical chain to direct the scattered light onto a diffraction grating, and a third optical chain to direct the diffracted light onto detection array. The diffraction grating is a plurality of alternating-slope stairsteps, wherein the portion of the step disposed parallel to the base of the diffraction grating is disposed so as to be orthogonal to the path of the scattered light from the second optical chain. The zeroth-order fringe is selected by a slit and directed onto camera. The resultant interferogram is Fourier transformed to produce a representation of the Raman spectrum.