This invention relates generally to synthetic procedures that include the step of ring-opening metathesis of cyclic olefins and reaction with an acyclic diene co-reactant to produce regularly repeating A,B-alternating olefin polymers. The A,B-alternating polymers are produced by varying reaction conditions and/or reactant proportions and using only two types of olefin metathesis (ring-opening and cross) to provide regularly repeating ABAB. . . etc. polymers via ring-opening metathesis polymerization (ROMP). More particularly, the invention pertains to synthesis of A,B-alternating olefin polymers via olefin metathesis reactions using a Group 8 transition metal complex as the metathesis catalyst. Polymers provided herein have utility in a variety of fields, including not only polymer chemistry per se, but also in the pharmaceutical, biomedical, and packaging industries where the structure and properties of polymers need to be tightly controlled.
Ring-Expansion Of Cyclic Olefins Metathesis Reactions With An Acyclic Diene
Choon Woo Lee - Pasadena CA, US Hyunjin M. Kim - San Ramon CA, US Robert H. Grubbs - South Pasadena CA, US
Assignee:
California Institute of Technology - Pasadena CA
International Classification:
C08F 4/44 B01J 31/38
US Classification:
526336, 526171, 526172, 502152, 502155
Abstract:
This invention relates generally to synthetic procedures that include the step of ring-opening metathesis of cyclic olefins and reaction with an acyclic diene co-reactant to produce olefin macrocycles by ring expansion, or alternatively. The ring expansion of the cyclic olefin is provided by three types of sequential olefin metathesis (ring-opening, cross, and ring-closing olefin metathesis). More particularly, the invention pertains to synthesis of olefin macrocycles via olefin metathesis reactions using a Group 8 transition metal complex as the metathesis catalyst. Macrocycles provided herein have a variety of uses in the pharmaceutical, biomedical, organic synthesis and chemical industries, such as the production of crown ethers that are useful as metal complexing species.
Choon Woo Lee - La Canada CA, US Soon Hyeok Hong - Pasadena CA, US Daniel P. Sanders - Pasadena CA, US Robert H. Grubbs - South Pasadena CA, US Richard L. Pederson - San Gabriel CA, US
Assignee:
Materia, Inc. - Pasadena CA
International Classification:
C07C 69/52
US Classification:
560205
Abstract:
The present invention relates to the use of isomerization inhibitors in olefin metathesis reactions. The inhibitors are low molecular weight organic acids such as formic acid, acetic acid, benzoic acid, and the like.
Ring Opening Cross-Metathesis Reaction Of Cyclic Olefins With Seed Oils And The Like
Elevance Renewable Sciences, Inc. - Boilingbrook IL
International Classification:
C07C 51/00 C07C 67/00
US Classification:
554124, 560128
Abstract:
This invention relates generally to olefin metathesis, and more particularly relates to the ring-opening, ring insertion cross-metathesis of cyclic olefins with internal olefins such as seed oils and the like. In one embodiment, a method is provided for carrying out a catalytic ring-opening cross-metathesis reaction, comprising contacting at least one olefinic substrate with at least one cyclic olefin as a cross metathesis partner, in the presence of a ruthenium alkylidene olefin metathesis catalyst under conditions effective to allow ring insertion cross metathesis whereby the cyclic olefin is simultaneously opened and inserted into the olefinic substrate. The invention has utility in the fields of catalysis, organic synthesis, and industrial chemistry.
The disclosure provides methods and materials suitable for preparing coating layers on substrates. The coatings comprise quaternary amine groups and therefore impart anti-bacterial properties to the substrate. In one embodiment, for example, there is provided a quaternary amine-containing polymeric coating comprising propylene and ethylene repeat units.
Provided herein are an apparatus and methods to induce electromagnetic field in biologic tissue for thermal therapy. The apparatus comprises electromagnetic devices fitted to be releasably deployed inside a body, magnetic materials to be deployed in a body, and a magnetic centrifuge machine. An electromagnetic device includes a controllably flexible fiberoptic tubular device with a magnetic-flux-controlled electromagnetic assembly on its distal end. The electromagnetic device receives direct or alternating electric current. Implanted particulate magnetic materials in close proximity to said electromagnetic assembly form reversible magnetic vascular mold in target blood vessels by static magnetic field produced by direct electric current to said electromagnetic assembly. Implanted magnetic materials generate heat by alternating magnetic field induced by alternating electric current to said electromagnetic assembly. A magnetic centrifuge machine removes magnetic materials from blood by centrifugation under static magnetic field after completion of thermal therapy.
Provided herein are a device and methods to obtain multiple serial samples from biologic tissues located in a tubular or cavitary space of a body. The device has a proximal and distal end, with a linear shaft connecting both ends. The distal end of the device comprises a tissue cutting assembly, a sample transport assembly and a sample storage assembly. The sample transport assembly comprises a slidable sample transport unit, a semi-cylindrical tubular sample chamber with a pair of axially linear rails located on both sides of said chamber and a system of differential pull wires. The sample transport unit slides on the rails of the sample chamber, providing longitudinally axial movement of the cup connected to said sample transport unit. The sample storage assembly comprises said sample chamber, a reversibly detachable sample catcher inserted in said sample chamber, a tubular sample housing and an expandable tubular sample housing.
Russell David Moore - St Paul MN, US Choon Hyong Lee - Irvine CA, US
International Classification:
A61B 17/50 A61B 17/3209
Abstract:
An implant removal device includes a body, a first arm, a second arm, an actuation interface, and an extraction member. The first arm is supported at the body and configured to move relative to the body between a retracted position and a skin gripping position. The second arm is supported at the body and configured to move relative to the body between the retracted position and the skin gripping position. The actuation interface is supported at the body. The actuation interface is configured to receive a first actuation input thereat to cause at least one of the first arm and the second arm to move from the skin gripping position to the retracted position. The extraction member is supported at the body and located between the first arm and the second arm.
Medical School Kyungpook Natl Univ, Coll of Med, Taegu, So Korea Graduated: 1968
Languages:
English Korean
Description:
Dr. Lee graduated from the Kyungpook Natl Univ, Coll of Med, Taegu, So Korea in 1968. He works in Dearborn, MI and specializes in Radiation Oncology. Dr. Lee is affiliated with Beaumont Hospital Taylor, Beaumont Hospital Trenton Southshore Campus, Beaumont Hospital Wayne and Beaumont Oakwood Hospital & Medical Center.