An improved mouthguard provides shock absorption for the jaw, teeth, and head to reduce the risk of injury when a user encounters a blow to the jaw. The improved mouthguard may comprise a generally U-shaped body having upwardly extending flanges which surround the arch of a user's teeth. An anterior section of the U-shaped body may have padding integrated therein to protect the front teeth. Posterior sections of the U-shaped body may have a thickened portion having one or more adjacent perforations or openings to increase shock absorption. The improved mouthguard may also have an inner layer of material configured to form impressions of the user's teeth to provide a custom fitting mouthguard. The inner layer and U-shaped body may be formed with a similar or the same curing process such that the inner layer and U-shaped body are permanently bonded together as the inner layer sets.
A mouthguard comprises a member formed of a resilient material and having an approximately U-shape corresponding generally to the shape of the arch of the upper jaw. The member includes a bottom wall designed to engage the lower teeth and spaced side walls or flanges extending upwardly therefrom and forming a cavity for receiving the upper teeth. Laterally the bottom wall comprises an approximately planar surface of sufficient width to extend laterally the full width of the lower teeth and engage both the buccal and the lingual cusps of the lower teeth. The bottom wall is formed to include a portion of greater thickness in the molar-bicuspid region, and a portion of maximum thickness in the region engaging the lower first molar. As the jaw closes, the jaw tends to pivot about the lower first molar, causing a slightly increased separation between the condyle of the mandible and the temporal bone and minimizing any damage caused by force transmitted in the temporomandibular joint area.