An electrically alterable, non-volatile memory cell has more than two memory states that can be programmed selectively. Programming of the cell is conducted by applying a plurality of programming signals having different characteristics to the cell. The programming signals include at least a first programming signal which programs the cell by a first increment and a subsequent programming signal which programs the cell by a second increment smaller than the first increment. As the cell is being programmed to a selected state, its programming status is verified independently of reference values bounding the memory states. For this purpose, a signal indicative of the programming status (e. g. , the cells bit line signal) is compared with a reference signal corresponding to the selected state but having a value different from the reference value or values bounding the selected state. The programming operation can thus be controlled without actually reading the memory state of the cell.
Electrically Alterable Non-Volatile Memory With N-Bits Per Cell
An electrically alterable, non-volatile memory cell has more than two memory states that can be programmed selectively. Programming of the cell is conducted by applying a plurality of programming signals having different characteristics to the cell. The programming signals include at least a first programming signal which programs the cell by a first increment and a subsequent programming signal which programs the cell by a second increment smaller than the first increment. As the cell is being programmed to a selected state, its programming status is verified independently of reference values bounding the memory states. For this purpose, a signal indicative of the programming status (e. g. , the cells bit line signal) is compared with a reference signal corresponding to the selected state but having a value different from the reference value or values bounding the selected state. The programming operation can thus be controlled without reading out the cell.
Electrically Alterable Non-Volatile Memory With N-Bits Per Cell
An electrically alterable, non-volatile memory cell has more than two memory states that can be programmed selectively. Programming of the cell is conducted by applying a plurality of programming signals having different characteristics to the cell. The programming signals include at least a first programming signal which programs the cell by a first increment and a subsequent programming signal which programs the cell by a second increment smaller than the first increment. As the cell is being programmed to a selected state, its programming status is verified independently of reference values bounding the memory states. For this purpose, a signal indicative of the programming status (e. g. , the cells bit line signal) is compared with a reference signal corresponding to the selected state but having a value different from the reference value or values bounding the selected state. The programming operation can thus be controlled without actually reading the memory state of the cell.
Memory Apparatus Including Programmable Non-Volatile Multi-Bit Memory Cell, And Apparatus And Method For Demarcating Memory States Of The Cell
Memory states of a multi-bit memory cell are demarcated by generating read reference signals having levels that constitute boundaries of the memory states. The read reference signals are dependent upon the levels of programming reference signals used for controlling the programming of the memory cell. The memory cell can thus be programmed without reading out its memory state during the programming process, with programming margins being assured by the dependence of the read reference signals on the programming reference signals. Both sets of reference signals may be generated by reference cells which track variations in the operating characteristics of the memory cell with changes in conditions, such as temperature and system voltages, to enhance the reliability of memory programming and readout.
Electrically Alterable Non-Volatile Memory With N-Bits Per Cell
An electrically alterable, non-volatile memory cell has more than two memory states that can be programmed selectively. Programming of the cell is conducted by applying a plurality of programming signals having different characteristics to the cell. The programming signals include at least a first programming signals which programs the cell by a first increment and a subsequent programming signal which programs the cell by a second increment smaller than the first increment. As the cell is being programmed to a selected state, its programming status is verified independently of reference values bounding the memory states. For this purpose, a signal indicative of the programming status (e. g. , the cells bit line signal) is compared with a reference signal corresponding to the selected state but having a value different from the reference value or values bounding the selected state. The programming operation can thus be controlled without actually reading the memory state of the cell.
Memory Apparatus Including Programmable Non-Volatile Multi-Bit Memory Cell, And Apparatus And Method For Demarcating Memory States Of The Cell
Memory states of a multi-bit memory cell are demarcated by generating read reference signals having levels that constitute boundaries of the memory states. The read reference signals may be dependent upon the levels of programming reference signals used for controlling the programming of the memory cell. The memory cell can thus be programmed without reading out its memory state during the programming process, with programming margins being assured by the dependence of the read reference signals on the programming reference signals. Both sets of reference signals may be generated by reference cells which track variations in the operating characteristics of the memory cell with changes in conditions, such as temperature and system voltages, to enhance the reliability of memory programming and readout.
Electrically Alterable Non-Volatile Memory With N-Bits Per Cell
An electrically alterable, non-volatile memory cell has more than two memory states that can be programmed selectively. Programming of the cell is conducted by applying a plurality of programming signals having different characteristics to the cell. The programming signals include at least a first programming signal which programs the cell by a first increment and a subsequent programming signal which programs the cell by a second increment smaller than the first increment. As the cell is being programmed to a selected state, its programming status is verified independently of reference values bounding the memory states. For this purpose, a signal indicative of the programming status (e. g. , the cells bit line signal) is compared with a reference signal corresponding to the selected state but having a value different from the reference value or values bounding the selected state. The programming operation can thus be controlled without actually reading the memory state of the cell.
Memory Apparatus Including Programmable Non-Volatile Multi-Bit Memory Cell, And Apparatus And Method For Demarcating Memory States Of The Cell
Memory states of a multi-bit memory cell are demarcated by generating read reference signals having levels that constitute boundaries of the memory states. The read reference signals may be dependent upon the levels of programming reference signals used for controlling the programming of the memory cell. The memory cell can thus be programmed without reading out its memory state during the programming process, with programming margins being assured by the dependence of the read reference signals on the programming reference signals. Both sets of reference signals may be generated by reference cells which track variations in the operating characteristics of the memory cell with changes in conditions, such as temperature and system voltages, to enhance the reliability of memory programming and readout.
Name / Title
Company / Classification
Phones & Addresses
Mr. Gerald Banks Owner
Harlem World Clothing Co Professional Services (General)