Abstract:
In one embodiment, provided is a fuel cell with an anode compartment and a cathode compartment comprising: in the anode compartment, an anode electrode and one or more dehydrogenase enzymes effective to transfer electrons from a C1 compound comprising carbon, oxygen and hydrogen (optionally consisting of carbon, oxygen and hydrogen) to electron carrier(s), and wherein or further comprising one of the following: (i) the electron carrier(s) are selected to operate with the dehydrogenase enzymes and to be effective to deliver electrons to the anode electrode, (ii) the electron carrier(s) are selected to operate with the dehydrogenase enzymes and to be effective to deliver electrons to electron transfer mediator(s) selected to be effective to deliver electrons to the anode electrode, wherein the anode compartment further comprises the electron transfer mediator(s), (iii) the electron carrier(s) are selected to operate with the dehydrogenase enzymes and to be effective to deliver electrons to a redox enzyme, the redox enzyme is selected to be effective to deliver electrons to second electron carrier(s), the second electron carrier(s) selected to be effective to deliver electrons to electron transfer mediator(s) selected to be effective to deliver the electrons to the anode electrode, wherein the anode compartment further comprises the redox enzyme, second electron carrier(s) and electron transfer mediator(s); in the cathode compartment, a cathode electrode which, when a conductive pathway to the first electrode is formed, is effective to convey the electrons to an electron acceptor composition in the cathode compartment; and a barrier separating the anode compartment from the cathode compartment but effective to convey protons from the anode compartment to the cathode compartment.