Abstract:
A computer controlled system for real-time control of semiconductor wafer fabrication process uses a multi-point, real-time, non-invasive, in-situ pyrometry-based temperature sensor with emissivity compensation to produce semiconductor wafer reflectance, transmittance, and radiant heat energy measurements. The temperature values that the sensor determines are true temperatures for various points on the wafer. The process control computer stores surface roughness values for the semiconductor wafer being examined. The surface roughness values are produced by surface roughness sensor that makes non-invasive and in-situ measurements. The surface roughness sensor performs roughness measurements of the semiconductor wafer based on coherent reflectance and scatter reflectance of the wafer. Based on surface roughness measurements, the process control computer can use the real-time, in-situ measurements of the multi-point pyrometry-based sensor to obtain real-time measurements of time wafer temperature distribution. By associating a multi-zone lamp module having a real-time controller with the present invention a feedback circuit is provided for real-time precision semiconductor wafer process control.