James S. Kaczmarek - Northville MI James M. Steimel - Rochester Hills MI
International Classification:
B65G 3700
US Classification:
1983461
Abstract:
A production line manufacturing system and method for building automotive vehicle bodies wherein a succession of workpieces is moved past stationary work stations includes programmable multi-position rotate unit that can be used in each of the work stations to accommodate both changes in workpieces to be processed and tools. The rotate unit comprises a four-position horizontally arranged fixture rotate table including four vertically arranged fixtures removably mounted thereon. A precision locator key on each of the fixtures positions each individual fixture on the rotate table and also serves as a positive fixture stop in the work position. A control for detecting the presence of a vehicle frame to be worked on controls the operation of the carrier and motor drive and cooperates to accurately position a desired fixture adjacent to the work position. The fixture stop makes contact with a programmable clamping means associated with the base and fixtures whereby the rotate table and a selected fixture are locked into a desired position.
James S. Kaczmarek - Northville MI Kenneth C. Kareta - Mount Clemens MI
Assignee:
Permaflex Company - Detroit MI
International Classification:
B23P 2400
US Classification:
29711
Abstract:
A permanently installed manufacturing system, to join together loose part sub-assemblies with quick change workstations and exchange tool transporters. The flexible manufacturing process involves the automatic, or manual, joining of loose components, regardless of the assembly technology used, the model mix required, or the type of product to be assembled. The system allows the utilization of interchangeable flex-tools, supported on various types of power and free transporters, that can be programmably controlled and automatically changes over. The system will accommodate batch runs, random runs, prototype runs, as well as synchronous and asynchronous operations.
Method Of Calibrating A Rotary Tool Unit For An Assembly Line
James S. Kaczmarek - Northville MI James M. Steimel - Rochester Hills MI
International Classification:
B23Q 4102 B62D 6500 B65G 3700
US Classification:
738659
Abstract:
A production line manufacturing system and method for building automotive vehicle bodies wherein a succession of workpieces is moved past stationary work stations includes programmable multi-position rotate unit that can be used in each of the work stations to accommodate both changes in workpieces to be processed and tools. The rotate unit comprises a four-position horizontally arranged fixture rotate table including four vertically arranged fixtures removably mounted thereon. A precision locator key on each of the fixtures positions each individual fixture on the rotate table and also serves as a positive fixture stop in the work position. A control for detecting the presence of a vehicle frame to be worked on controls the operation of the carrier and motor drive and cooperates to accurately position a desired fixture adjacent to the work position. The fixture stop makes contact with a programmable clamping means associated with the base and fixtures whereby the rotate table and a selected fixture are locked into a desired position.
Christopher Thomas Gullo - Centerville OH Stephen James Bolin - Troy OH James Stanley Kaczmarek - Farmington Hills MI
Assignee:
Motoman Inc. - West Carrollton OH
International Classification:
B23K 2612
US Classification:
21912186
Abstract:
A laser enclosure is provided comprising a housing having an inner cavity in which laser operations are performed. The housing includes a first section having a first opening through which workpieces pass into and out of the inner cavity. Further provided is a first workpiece positioner for alternately moving the workpieces from a first workpiece loading/unloading zone, through the first opening to a first work zone within the inner cavity of the housing. The first workpiece positioner includes a first workpiece holder adapted to releasably receive at least one of the workpieces and is movable from the first workpiece loading/unloading zone to the first work zone as the first positioner moves from a first loading/unloading position to a first work position. The first positioner further includes a first sealing panel which sealingly mates with a first sealing portion of the first section of the housing when the first workpiece holder is located in the first workpiece loading/unloading zone and a second sealing panel which sealingly mates with a second sealing portion of the first section of the housing when the first workpiece holder is located in the first work zone.
James S. Kaczmarek - Northville MI Kenneth C. Kareta - Mount Clemens MI
International Classification:
B23P 2100
US Classification:
29711
Abstract:
A permanently installed manufacturing system, to join together loose part sub-assemblies with quick change workstations and exchange tool transporters. The flexible manufacturing process involves the automatic, or manual, joining of loose components, regardless of the assembly technology used, the model mix required, or the type of product to be assembled. The system allows the utilization of interchangeable flex-tools, supported on various types of power and free transporters, that can be programmably controlled and automatically changes over. The system will accommodate batch runs, random runs, prototype runs, as well as synchronous and asynchronous operations.