A system for maintaining pressure in the liquid fuel tank of a high-speed flight vehicle, such as a hypersonic flight, scramjet powered air and space vehicle, manages tank ullage using a pressure regulator coupled to the fuel tank that supplies pressurized gaseous media into the fuel tank ullage based on the internal pressure of the tank. The regulator has an on-board controller that processes tank pressure input to deliver a pulse-width modulated input signal to the coil of the on-board solenoid metering assembly. Energizing the coil drives the metering valve open against spring force. The metering assembly is contained in a removable cartridge that has a floating valve guide that is held stationary by bias of the spring against the metering valve. The metering valve has a separate valve seat that mates with the metering orifice of a flow nozzle. The valve seat can have higher compressibility than a clapper part of the valve to effect a better seal, with its compression being controlled by contact of the clapper with a rigid stop surface of the flow nozzle.
Harvey B. Jansen - Mesa AZ, US John F. Calleja - Gilbert AZ, US Rickie P. Western - Gold Canyon AZ, US
Assignee:
Jansen's Aircraft Systems Controls, Inc. - Tempe AZ
International Classification:
F16K 47/00
US Classification:
251122, 251 3002, 251 636
Abstract:
A reverse flow valve for metering high pressure gaseous media, such as ignition media to the injectors of a scramjet engine in a hyerpsonic flight vehicle, has a metering member that moves parallel to the flow direction of the metered media and throttles the valve in a direction counter to the flow direction. This reduces side loading on the metering member and permits the use of a lighter and smaller actuating mechanism. The metering member can be a pintle having a uniquely configured pintle seat providing bubble tight shut off of the inlet flow without effecting the critical flow contour of the media. The pintle can be driven by a piston that is responsive to push-pull forces of pressurized drive fluid under servo control. The drive fluid is isolated from the gaseous media by a primary seal, which can be seated on the piston without deformation by a seal retainer. The drive fluid can be fuel diverted from the sustained combustion fuel system of the vehicle so that a separate hydraulic system is not required.
Harvey Jansen - Mesa AZ, US John Calleja - Gilbert AZ, US Raymond Forrester - Chandler AZ, US
International Classification:
F02C007/22
US Classification:
060734000
Abstract:
A fuel control system is provided in a single compact modular unit. The unit includes a motor driving a highly accurate cam-operated double-acting piston metering pump, both of which are contained in a liquid fuel environment. As the liquid fuel is pumped it works to cool internal components including the motor. An electronic motor drive is contained in a dry chamber of the unit for controlling operation of the motor and pump and is cooled indirectly by the fuel as well. A pressure sensitive flow divider is also included for selectively providing one or multiple output fuel flow paths depending upon whether a pressure threshold is reached, for example to send fuel to primary and secondary burner nozzles. Filter, filter bypass, pressure relief, and fuel shut-off components are also integrated into the single modular unit.