Antitrust Health Care Law Intellectual Property Antitrust/Competition Healthcare Intellectual Property Litigation
Jurisdiction:
Illinois (1978) Illinois (1985) Illinois 1978 U.S. Court of Appeals, 7th Circuit 1996 U.S. Court of Appeals, Federal Circuit 2002 U.S. District Court, N.D. of Illinois - General 1978 U.S. District Court, N.D. of Illinois - Trial Bar 1985
Law School:
Columbia University School of Law
Education:
Columbia University School of Law, JD Harvard University, BA
Links:
Website
Us Patents
Antenna Pointing Bias Estimation Using Radar Imaging
A system for estimating an antenna boresight direction. The novel system includes a first circuit for receiving a Doppler measurement and a line-of-sight direction measurement corresponding with the Doppler measurement, and a processor adapted to search for an estimated boresight direction that minimizes a Doppler error between the Doppler measurement and a calculated Doppler calculated from the estimated boresight direction and the line-of-sight direction measurement. The line-of-sight direction measurement is measured relative to the true antenna boresight, and the calculated Doppler is the Doppler calculated for a direction found by applying the line-of-sight direction measurement to the estimated boresight direction. In a preferred embodiment, the first circuit receives a Doppler measurement and a line-of-sight direction measurement from each of a plurality of pixels, and the processor searches for an estimated boresight direction that minimizes a sum of squares of Doppler errors for each of the pixels.
Radar Imaging System And Method Using Gradient Magnitude Second Moment Spatial Variance Detection
A detection system and method. The inventive system includes an arrangement for receiving a frame of image data; an arrangement for performing a rate of change of variance calculation with respect to at least one pixel in said frame of image data; and an arrangement for comparing said calculated rate of change of variance with a predetermined threshold to provide output data. In the illustrative embodiment, the frame of image data includes a range/Doppler matrix of N down range samples and M cross range samples. In this embodiment, the arrangement for performing a rate of change of variance calculation includes an arrangement for calculating a rate of change of variance over an N×M window within the range/Doppler matrix. The arrangement for performing a rate of change of variance calculation includes an arrangement for identifying a change in a standard deviation of a small, localized sampling of cells. In accordance with the invention, the arrangement for performing a rate of change of variance calculation outputs a rate of change of variance pixel map.
Radar Imaging System And Method Using Second Moment Spatial Variance
A detection system and method. The inventive system includes an arrangement for receiving a frame of image data; an arrangement for performing a variance calculation with respect to at least one pixel in the frame of image data; and an arrangement for comparing the calculated variance with a predetermined threshold to provide output data. In the illustrative embodiment, the frame of image data includes a range/Doppler matrix of N down range samples and M cross range samples. In this embodiment, the arrangement for performing a variance calculation includes an arrangement for calculating a variance over an N×M window within the range/Doppler matrix. The arrangement for performing a variance calculation includes an arrangement for identifying a change in a standard deviation of a small, localized sampling of cells. In accordance with the invention, the arrangement for performing a variance calculation outputs a variance pixel map.
Detection System And Method Using Gradient Magnitude Second Moment Spatial Variance Detection
A detection system includes a detection processor configured to receive a frame of image data that includes a range/Doppler matrix, perform a rate-of-change of variance calculation with respect to at least one pixel in the frame of image data, and compare the calculated rate-of-change of variance with a predetermined threshold to provide output data. The range/Doppler matrix may include N down-range samples and M cross-range samples. The detection processor may calculate a rate-of-change of variance over an N×M window within the range/Doppler matrix.
Radar Imaging System And Method Using Directional Gradient Magnitude Second Moment Spatial Variance Detection
Donald Bruyere - Tucson AZ, US Ivan Ashcraft - Marana AZ, US John Treece - Tucson AZ, US
International Classification:
G01S 13/90
US Classification:
342 25 E
Abstract:
A detection system and method. The inventive system includes an arrangement for receiving a frame of image data; an arrangement for performing a rate of change of variance calculation with respect to at least one pixel in said frame of image data; and an arrangement for comparing said calculated rate of change of variance with a predetermined threshold to provide output data. In the illustrative embodiment, the frame of image data includes a range/Doppler matrix of N down range samples and M cross range samples. In this embodiment, the arrangement for performing a rate of change of variance calculation includes an arrangement for calculating a rate of change of variance over an N×M window within the range/Doppler matrix. The arrangement for performing a rate of change of variance calculation includes an arrangement for identifying a change in a standard deviation of a small, localized sampling of cells. In accordance with the invention, the arrangement for performing a rate of change of variance calculation outputs a rate of change of variance pixel map.