Joseph McDowell - Los Gatos CA 95030 James Harris - Saratoga CA 95070 Juan Monico - San Jose CA 95123 Otto Voegli - Morgan Hill CA 95037
International Classification:
G11C 1114
US Classification:
365171, 365173
Abstract:
The present invention, generally speaking, provides a magnetic memory element that is single domain in nature and has a geometry that mitigates the effects of half-select noise. In a preferred embodiment, the magnetic memory element takes the form of a magnetic post or tube having an aspect ratio in the range of 2:1 (more preferably 4:1). The outside diameter of the magnetic tube or post is preferably less than 0. 8 microns, more preferably 0. 6 microns or less. The magnetic post or tube then functions as a single magnetic domain. In the case of a magnetic tube, the skin of the tube is formed of a magnetic material and the interior of the tube is formed of a non-magnetic material. Suitable non-magnetic materials include copper, gold and silicon. The coercivity of the magnetic tube structure may be adjusted by adjusting the thickness of the magnetic skin. As a result, the magnetic memory element is readily scalable to smaller geometries as lithographic techniques improve.
High-Efficiency Miniature Magnetic Integrated Circuit Structures
Joseph McDowell - Los Gatos CA James Harris - Saratoga CA Juan Monico - San Jose CA Otto Voegli - Morgan Hill CA
Assignee:
Plumeria Investments, Inc. - Los Altos CA
International Classification:
H01L 2982
US Classification:
257421, 257427
Abstract:
The present invention, generally speaking, provides a magnetic memory element that is single domain in nature and has a geometry that mitigates the effects of half-select noise. In a preferred embodiment, the magnetic memory element takes the form of a magnetic post or tube having an aspect ratio in the range of 2:1 (more preferably 4:1). The outside diameter of the magnetic tube or post is preferably less than 0. 8 microns, more preferably 0. 6 microns or less. The magnetic post or tube then functions as a single magnetic domain. In the case of a magnetic tube, the skin of the tube is formed of a magnetic material and the interior of the tube is formed of a non-magnetic material. Suitable non-magnetic materials include copper, gold and silicon. The coercivity of the magnetic tube structure may be adjusted by adjusting the thickness of the magnetic skin. As a result, the magnetic memory element is readily scalable to smaller geometries as lithographic techniques improve.
High-Efficiency Miniature Magnetic Integrated Circuit Structures
Joseph McDowell - Los Gatos CA, US James Harris - Menlo Park CA, US Juan Monico - San Jose CA, US Otto Voegli - Morgan Hill CA, US
International Classification:
G11C011/14
US Classification:
365/171000
Abstract:
The present invention, generally speaking, provides a magnetic memory element that is single domain in nature and has a geometry that mitigates the effects of half-select noise. In a preferred embodiment, the magnetic memory element takes the form of a magnetic post or tube having an aspect ratio in the range of 2:1 (more preferably 4:1). The outside diameter of the magnetic tube or post is preferably less than 0.8 microns, more preferably 0.6 microns or less. The magnetic post or tube then functions as a single magnetic domain. In the case of a magnetic tube, the skin of the tube is formed of a magnetic material and the interior of the tube is formed of a non-magnetic material. Suitable non-magnetic materials include copper, gold and silicon. The coercivity of the magnetic tube structure may be adjusted by adjusting the thickness of the magnetic skin. As a result, the magnetic memory element is readily scalable to smaller geometries as lithographic techniques improve. The combination of very small, single-domain size and a relatively large aspect ratio results in uniquely desirable properties. Current levels within any reasonable expectation operate to switch the state of the magnetic tube only when the magnetic tube is destabilized by running current through it. With current flowing through the magnetic tube, its state may be readily changed by running modest currents in opposite directions through two parallel conductors, one on each side of the magnetic tube. When the magnetic tube is switched, the single domain nature of the magnetic tube produces a signal that is typically 10-15 times stronger than signals produced by conventional magnetic memory elements. The magnetic tube functions as a vertical magnetic field generator and may be formed in intimate proximity to a magnetic field sensor such as above the gate of a magFET.
Segmented Backplane For Multiple Microprocessing Modules
The invention relates to a novel type of segmented backplane for multiple microprocessor module boards. The modules are connected to a plurality of backplane segments. Each backplane segment includes connectors for attachment of the microprocessing modules, and a bus segment. When the backplane segments are connected together, the bus segments form a continuous bus. The microprocessing modules carry out their intra-module communication entirely within their own backplane segment without communication through the bus. However, all inter-module communication is carried out through the bus.
High-Efficiency Miniature Magnetic Integrated Circuit Structures
Joseph McDowell - Los Gatos CA James Harris - Saratoga CA Juan Monico - San Jose CA Otto Voegli - Morgan Hill CA
Assignee:
Plumeria Investments, Inc. - Los Altos CA
International Classification:
H01L 21336
US Classification:
438 3
Abstract:
The present invention, generally speaking, provides a magnetic memory element that is single domain in nature and has a geometry that mitigates the effects of half-select noise. In a preferred embodiment, the magnetic memory element takes the form of a magnetic post or tube having an aspect ratio in the range of 2:1 (more preferably 4:1). The outside diameter of the magnetic tube or post is preferably less than 0. 8 microns, more preferably 0. 6 microns or less. The magnetic post or tube then functions as a single magnetic domain. In the case of a magnetic tube, the skin of the tube is formed of a magnetic material and the interior of the tube is formed of a non-magnetic material. Suitable non-magnetic materials include copper, gold and silicon. The coercivity of the magnetic tube structure may be adjusted by adjusting the thickness of the magnetic skin. As a result, the magnetic memory element is readily scalable to smaller geometries as lithographic techniques improve.
High-Efficiency Miniature Magnetic Integrated Circuit Structures
Joseph McDowell - Los Gatos CA James Harris - Saratoga CA Juan Monico - San Jose CA Otto Voegli - Morgan Hill CA
Assignee:
Magnetic Semiconductors - Cupertino CA
International Classification:
G11C 1118
US Classification:
365170
Abstract:
Magnetic integrated circuit structures exhibit desirable characteristics for purposes of realizing a magnetic semiconductor memory. In combination with a carrier-deflection-type magnetic field sensor, each of a variety of magnet structures realize a condition in which the magnetic field is substantially orthogonal to the direction of travel of carriers of a sense current, thereby achieving maximum sensitivity. In general, the magnetic structures are highly efficient and achieve a high degree of control of the magnetic field. As a result, a minimum-size device such as a MOS device suffices for purposes of sourcing a magnetizing current. By basing a magnetic memory cell on a single minimum-size MOS device, a small cell may be realized that compares favorably with a conventional DRAM or FLASH memory cell. The greater degree of control over the magnetic field afforded by the magnetic structures enables cross-coupling between cells in a memory array to be minimized.
High-Efficiency Miniature Magnetic Integrated Circuit Structures
Joseph McDowell - Los Gatos CA James Harris - Saratoga CA Juan Monico - San Jose CA Otto Voegli - Morgan Hill CA
Assignee:
Plumeria Investments, Inc. - Los Altos CA
International Classification:
H01L 2100 H01L 2982 H01L 4300 G11C 1115
US Classification:
438 3
Abstract:
The present invention, generally speaking, provides a magnetic memory element that is single domain in nature and has a geometry that mitigates the effects of half-select noise. In a preferred embodiment, the magnetic memory element takes the form of a magnetic post or tube having an aspect ratio in the range of 2:1 (more preferably 4:1). The outside diameter of the magnetic tube or post is preferably less than 0. 8 microns, more preferably 0. 6 microns or less. The magnetic post or tube then functions as a single magnetic domain. In the case of a magnetic tube, the skin of the tube is formed of a magnetic material and the interior of the tube is formed of a non-magnetic material. Suitable non-magnetic materials include copper, gold and silicon. The coercivity of the magnetic tube structure may be adjusted by adjusting the thickness of the magnetic skin. As a result, the magnetic memory element is readily scalable to smaller geometries as lithographic techniques improve.