Texas Tech University Health Sciences Center Feb 2011 - Oct 2014
Postdoc Research Associate
University of Pennsylvania Feb 2011 - Oct 2014
Research Specialist
Biocompatible, lubricious, highly durable coatings for medical devices are formed from a highly adherent base-coat and a hydrophilic top-coat that is chemically grafted to the base-coat and has a chemically cross-linked structure. The base-coat constitutes a carboxylic acid containing polymer. The top-coat includes a carboxylic acid containing hydrophilic polymer and chromium (III) ion as the cross-linking agent. The coating possesses biocompatibility and gamma ray-sterilization stability. The coated products in aqueous media display an unmatched combination of lubricity, abrasion resistance, and chemical stability.
Hydrophilic And Non-Thrombogenic Polymer For Coating Of Medical Devices
A hydrophilic copolymer is designed and synthesized by copolymerization of an acidic monomer and a second hydrophilic monomer. The copolymer is non-thrombogenic, hydrophilic and incorporates reactive functional groups. The copolymer can then be covalently attached to a primer/base coat through its functional groups, to form a durable lubricious coating on medical devices. A coating formed of the polymer on a surface is non-thrombogenic and non-cytotoxic. The coating shows good stability in gamma ray, e-beam and ethylene oxide sterilization.
Dual Purpose Universal Influenza Vaccine Confers Protective Immunity Against Anthrax
- Lubbock TX, US Maria T. Arevalo - Athens GA, US Junwei Li - El Paso TX, US
International Classification:
C07K 14/005 G01N 33/50 A61K 39/145
Abstract:
The present invention includes antigenic fusion proteins, nucleic acids encoding the fusion proteins and methods of making and using the same, wherein the fusion protein comprises three or more different influenza A ectodomains of Matrix Protein 2 (M2e); one or more stem regions of an influenza A hemagglutinin 2 (HA2) protein; and optionally an anthrax antigen, wherein the fusion protein is immunogenic across strains.
Live Attenuated Viral Vaccine Created By Self-Attenuation With Species-Specific Artificial Microrna
The present invention includes a live attenuated virus and methods of making the same comprising an isolated virus comprising a viral genome that expresses one or more viral antigens; and one or more exogenous species-specific microRNAs inserted into the viral genome and expressed thereby, wherein the species-specific microRNAs are ubiquitously expressed in a viral target species cell but not in a viral propagation cell.
The present invention includes an isolated antigen against influenza A and a method of making the same that includes an ectodomain of influenza A Matrix Protein 2 (M2e) and a stem region of an influenza A hemagglutinin 2 (HA2) protein and an adjuvant. The invention further includes formulating the antigen into an isolated immune response stimulating fusion protein and/or a vaccine.