- Spring TX, US Kristopher Erickson - Palo Alto CA, US Thomas Craig Anthony - Palo Alto CA, US Lihua Zhao - Palo Alto CA, US
Assignee:
Hewlett-Packard Development Company, L.P. - Spring TX
International Classification:
B22F 1/105 B33Y 70/00 B33Y 10/00 B22F 10/14
Abstract:
The present disclosure relates to a method of three-dimensional (3D) printing a 3D printed metal object. The method comprises selectively jetting an alloying agent onto build material. The build material comprises a first metal and the alloying agent comprises an alloying component that forms an alloy with the first metal. The method also comprises selectively jetting a binding agent onto the build material; binding the build material to form a layer: the alloying component is incorporated in the 3D object in a predetermined arrangement that comprises a first and a second region. The first region comprises the alloying component and the second region is substantially free from the alloying component or comprises the alloying component at a lower concentration than the first regions. The disclosure also relates to a kit that may be used in the method and a 3D printed structure that may be formed using the method.
3D Printed Objects And Enclosed Container Structures
- Spring TX, US Melanie Martin Citta - Palo Alto CA, US John C. Greeven - Corvallis OR, US Kristopher J. Erickson - Palo Alto CA, US Jarrid Wittkopf - Palo Alto CA, US Temiloluwa Adegoke - Corvallis OR, US
Assignee:
Hewlett-Packard Development Company, L.P. - Spring TX
In one example in accordance with the present disclosure, an additive manufacturing system is described. The additive manufacturing system includes an additive manufacturing device to form 1) a three-dimensional (3D) printed object and a container structure to form part of the 3D printed object. The container structure expels a payload when a predetermined condition is met. The additive manufacturing system also includes a payload distributor to place the payload in the container structure. A controller of the additive manufacturing system controls formation of the 3D printed object and the container structure.
- Spring TX, US Thomas Craig Anthony - Palo Alto CA, US Kristopher Erickson - Palo Alto CA, US Lihua Zhao - Palo Alto CA, US
Assignee:
Hewlett-Packard Development Company, L.P. - Spring TX
International Classification:
B22F 10/14 B22F 10/39 B22F 1/00
Abstract:
The present disclosure relates to a method of three-dimensional (3D) printing a 3D printed object. The method comprises: selectively jetting a marking agent onto a first region of build material, wherein the build material comprises at least one meta and/or ceramic; selectively jetting a binding agent onto at least a portion of the build material; and binding the build material to form a layer; such that the marking agent is incorporated in the metal part in a predetermined arrangement that forms a detectable marker in the 3D printed object. The disclosure also relates to a multi-fluid inkjet kit for 3D printing.
In one example in accordance with the present disclosure, an additive manufacturing system is described. The additive manufacturing system includes an additive manufacturing device to form a three-dimensional (3D) printed object. The additive manufacturing system also includes a controller to form a 3D printed capacitor on a body of the 3D printed object. The controller does this by controlling deposition of a conductive agent to form electrodes of the 3D printed capacitor and by controlling deposition of a dielectric agent in a dielectric region between the electrodes of the 3D printed capacitor.
A three-dimensional (3D) printing device may include a pulsed electromagnetic radiation source; a build platform to maintain a number of layers of build material thereon and receive pulsed electromagnetic radiation from the pulsed electromagnetic radiation source; a micromirror array to selectively direct the pulsed electromagnetic radiation from the pulsed electromagnetic radiation source to the build material on the build platform; and a coolant tank with coolant therein to cool the micromirror array.
- Spring TX, US Thomas Anthony - Palo Alto CA, US Krzysztof Nauka - Palo Alto CA, US Kristopher J. Erickson - Palo Alto CA, US
International Classification:
B22F 1/00 B22F 9/04 B33Y 70/10
Abstract:
A powder bed material can include from 80 wt % to 100 wt % metal particles having a D50 particle size distribution value from 4 μm to 150 μm. From 10 wt % to 100 wt % of the metal particles can be surface-activated metal particles having in intact inner volume and an outer volume with structural defects. The structural defects can exhibit an average surface grain density of 50,000 to 5,000,000 per mm.
A three-dimensional (3D) printing device includes a first cylinder. The first cylinder may include a first plurality of holes defined therein. The 3D printing device may include a second cylinder interior and coaxial to the first cylinder that includes a second plurality of holes open to an interior of the first cylinder. The 3D printing device may also include a third cylinder interior to the first cylinder and exterior to the second cylinder, the third cylinder including a longitudinal cutout open to the first cylinder. The 3D printing device may include a supply tube open to the second cylinder, the supply tube to provide an amount of build material to an interior portion of the second cylinder.
The present disclosure is drawn to a material set including a powder bed material and a binder fluid. The powder bed material can be from 80 wt % to 100 wt % metal particles having a metal core and a thin metal layer on the core, and the metal particles having a D50 particle size distribution value ranging from 4 μm to 150 μm and the thin metal layer having an average thickness from 20 nm to 2 μm. The binder fluid can adhere a first portion of the powder bed material relative to a second portion of the powder bed material not in contact with the binder fluid.