William S. Banham - Garrettsville OH Stephen W. Cook - Chesterland OH Larry W. Stacy - Mantua OH
Assignee:
Kinetico Engineered Systems, Inc. - Newbury OH
International Classification:
C02F 142
US Classification:
210142
Abstract:
A method and apparatus for regenerating an ion exchange resin utilizing recycled solution or reused regeneration solution. At least one tank containing an ion exchange material is provided having a spaced first and second ports which define a fluid flow path through the ion exchange media. Water to be treated is introduced at an inlet and flows through the resin bed ultimately being discharged at the outlet. A polishing zone is located at the outlet which includes highly regenerated, uncontaminated resin. The media is regenerated in a multi-step process in which regeneration solution is introduced into the resin bed in two separate steps. In the first step, a first regeneration solution is introduced into the resin bed upstream from the polishing zone, flows in a countercurrent direction and is discharged through the inlet of the tank. A second regeneration fluid is introduced at the outlet of the tank and flows in a countercurrent direction through the entire resin bed. The first solution is introduced by an injection conduit that extends from a fitting located at the tank inlet and terminates in slots that open upstream of the polishing zone.
William S. Banham - Garrettsville OH Stephen W. Cook - Chesterland OH Larry W. Stacy - Mantua OH
Assignee:
Kinetico Engineered Systems, Inc. - Newbury OH
International Classification:
C02F 142
US Classification:
210677
Abstract:
A method and apparatus for regenerating an ion exchange resin utilizing recycled solution or reused regeneration solution. At least one tank containing an ion exchange material is provided having a spaced first and second ports which define a fluid flow path through the ion exchange media. Water to be treated is introduced at an inlet and flows through the resin bed ultimately being discharged at the outlet. A polishing zone is located at the outlet which includes highly regenerated, uncontaminated resin. The media is regenerated in a multi-step process in which regeneration solution is introduced into the resin bed in two separate steps. In the first step, a first regeneration solution is introduced into the resin bed upstream from the polishing zone, flows in a countercurrent direction and is discharged through the inlet of the tank. A second regeneration fluid is introduced at the outlet of the tank and flows in a countercurrent direction through the entire resin bed. The first solution is introduced by an injection conduit that extends from a fitting located at the tank inlet and terminates in slots that open upstream of the polishing zone.