A process to improve the polymeric filtration aid performance used in removal of gypsum from phosphoric acid/gypsum slurry. A synergistic effect has been observed by using a Dual Injection method. This method more specifically involves using two polymers (A & B) of different chemistry and injecting into slurry at a different time. The polymer chemistry of filtration aid A is selected from the group consisting of non-ionic, and anionic polymers and the polymer chemistry of filtration aid B is selected from the group consisting of sulfonated polymers. The polymer (A & B) usage is reduced by around 50% and performance improved.
Method For Improving Gypsum/Phosphoric Acid Slurry Filtration Using Carboxymethyl Cellulose
A chemical process to improve the filtration performance for the removal of gypsum from phosphoric acid/gypsum slurry using a filtration aid that is selected from a class of polymers, lower molecular weight anionic polyelectrolytes, which previously have not been used for this application. The polymer is CMC or Carboxymethyl Cellulose, which is a polymerized cellulose ether. CMC is found to be extremely effective for phosphoric acid/gypsum slurry that was produced from igneous phosphate rock. CMC is also available in food grade, which is novel for filtration aids for the production of phosphoric acid which may be used for human or animal feed.
Dual Injection Of Two Polymeric Filtration Aids For Gypsum Removal From Phosphoric Acid/Gypsum Slurry
A process to improve the polymeric filtration aid performance used in removal of gypsum from phosphoric acid/gypsum slurry. A synergistic effect has been observed by using a Dual Injection method. This method more specifically involves using two polymers (A & B) of different chemistry and injecting into slurry at a different time. The polymer chemistry of filtration aid A is selected from the group consisting of non-ionic, anionic, and cationic polymers and the polymer chemistry of filtration aid B is selected from the group consisting of sulfonated polymers. The polymer (A & B) usage is reduced by around 50% and performance improved.