A pipeline laying ship and an improved method of laying a pipeline in a marine environment is disclosed. The pipeline laying ship is a dynamically positioned barge or self-propelled dynamically positioned vessel with a hull having a deck area that supports a pair of reels. The reels are independently rotatable, and are position to generally port and starboard relative to one another. A pipe joint storage area is provided for containing multiple joints of pipe. One or more pipeline welding stations are provided on the deck next to the reels, the pipeline welding stations being positioned to join the joints of pipe together to form an elongated pipeline that can be wound upon a selected reel of said pair of reels. A tower is provided for guiding the elongated pipeline as it is unwound from a selected reel, the tower including at least a bend controller, a straightener and a tensioner. The tower is transversely and movably mounted upon the hull between the port and starboard positions that enable a pipeline to be welded and then wound upon either of the reels and to be unwound from either of the reels for launching to the sea bed via the tower.
A pipeline laying ship and an improved method of laying a pipeline in a marine environment is disclosed. The pipeline laying ship is a dynamically positioned barge or self-propelled dynamically positioned vessel with a hull having a deck area that supports a pair of reels. The reels are independently rotatable, and are position to generally port and starboard relative to one another. A pipe joint storage area is provided for containing multiple joints of pipe. One or more pipeline welding stations are provided on the deck next to the reels, the pipeline welding stations being positioned to join the joints of pipe together to form an elongated pipeline that can be wound upon a selected reel of said pair of reels. A tower is provided for guiding the elongated pipeline as it is unwound from a selected reel, the tower including at least a bend controller, a straightener and a tensioner. The tower is transversely and movably mounted upon the hull between the port and starboard positions that enable a pipeline to be welded and then wound upon either of the reels and to be unwound from either of the reels for launching to the sea bed via the tower.
A pipeline laying ship has a hull with a deck area and a moon pool that extends through the hull midships. The pipeline welding stations are provided on the deck in between the bow of the hull and the moon pool. A superstructure is positioned in front of the moon pool and extends upwardly from the deck. The superstructure includes a track that is comprised of a plurality of supports for supporting a pipeline to be launched to the seabed. The superstructure has upper and lower sections that are removable with respect to each other. The upper section pivots upon the lower section in the preferred embodiment. The superstructure lower section supports the welded pipeline as it is being fabricated in a first plane that includes a central longitudinal axis for the pipeline. The upper section supports the pipeline on a second plane that forms an acute angle with the first plane. A pipeline launching section is also supported by the superstructure and provides a straightener, tensioner and a clamping mechanism for supporting the pipeline.
A pipeline laying ship and an improved method of laying a pipeline in a marine environment is disclosed. The pipeline laying ship is a dynamically positioned barge or self-propelled dynamically positioned vessel with a hull having a deck area that supports a pair of reels. The reels are independently rotatable, and are position to generally port and starboard relative to one another. A pipe joint storage area is provided for containing multiple joints of pipe. One or more pipeline welding stations are provided on the deck next to the reels, the pipeline welding stations being positioned to join the joints of pipe together to form an elongated pipeline that can be wound upon a selected reel of said pair of reels. A tower is provided for guiding the elongated pipeline as it is unwound from a selected reel, the tower including at least a bend controller, a straightener and a tensioner. The tower is transversely and movably mounted upon the hull between the port and starboard positions that enable a pipeline to be welded and then wound upon either of the reels and to be unwound from either of the reels for launching to the sea bed via the tower.
A pipeline laying ship and an improved method of laying a pipeline in a marine environment is disclosed. The pipeline laying ship is a dynamically positioned barge or self-propelled dynamically positioned vessel with a hull having a deck area that supports a pair of reels. The reels are independently rotatable, and are position to generally port and starboard relative to one another. A pipe joint storage area is provided for containing multiple joints of pipe. One or more pipeline welding stations are provided on the deck next to the reels, the pipeline welding stations being positioned to join the joints of pipe together to form an elongated pipeline that can be wound upon a selected reel of said pair of reels. A tower is provided for guiding the elongated pipeline as it is unwound from a selected reel, the tower including at least a bend controller, a straightener and a tensioner. The welding stations and tower are each transversely and movably mounted upon the hull between the port and starboard positions that enable a pipeline to be welded and then wound upon either of the reels and to be unwound from either of the reels for launching to the sea bed via the tower.
A pipeline laying ship and an improved method of laying a pipeline in a marine environment is disclosed. The pipeline laying ship is a dynamically positioned barge or self-propelled dynamically positioned vessel with a hull having a deck area that supports a pair of reels. The reels are independently rotatable, and are position to generally port and starboard relative to one another. A pipe joint storage area is provided for containing multiple joints of pipe. One or more pipeline welding stations are provided on the deck next to the reels, the pipeline welding stations being positioned to join the joints of pipe together to form an elongated pipeline that can be wound upon a selected reel of said pair of reels. A tower is provided for guiding the elongated pipeline as it is unwound from a selected reel, the tower including at least a bend controller, a straightener and a tensioner. The tower is transversely and movably mounted upon the hull between the port and starboard positions that enable a pipeline to be welded and then wound upon either of the reels and to be unwound from either of the reels for launching to the sea bed via the tower. The tower can be mounted upon a transverse track. The tower can be positioned aft for launching the pipeline from the hull stern. The tower can be mounted amidships for launching the pipeline through a vertical hull opening or “moon pool”. A specially configured clamp is mounted on the hull below the top of the tower for clamping and holding the pipeline as it is launched from the tower to the water's surface. The clamp can be moved with a section of the clamped pipeline between port and starboard positions enabling other pipe sections (e.g. manifolds) to be welded to the pipeline above the clamp.
Lyle Glennis Stockstill - New Orleans LA, US Lylyn Hingle Stockstill - New Orleans LA, US
International Classification:
F16L 1/00
US Classification:
405170
Abstract:
A pipe reeling system can be positioned in a location adjacent a dock to prepare spools of wound pipeline. The pipe segments are delivered to the facility from a steel mill or other manufacturer and placed on one or more pipe storage racks in a first orientation. The pipe segments are then moved to an elevated pipe feeding bed, from which they are fed in a second direction, transverse to the first direction through a plurality of weld stations. The pipe segments welded end-to-end form a continuous pipe unit, which is transferred to a spool and wound thereon. The spools can be prepared in advance of a request from a pipeline operator and stored in the facility on the reels until required.
Name / Title
Company / Classification
Phones & Addresses
Lyle Stockstill CEO
Torch Offshore Inc Crude Petroleum Pipelines
401 Whitney Ave # 128, Gretna, LA 70056 Website: torchinc.com
Lyle Stockstill Manager
Torch Inc Water, Sewer, Pipeline, and Communications an...
2509 Petroleum Dr, Houma, LA 70363
Lyle Stockstill Chairman
TORCH OFFSHORE L L C
1221 Mckinney St STE 4400, Houston, TX 77010
Lyle Stockstill
ESLP TORCH, INC
401 Whitney Ave SUITE 400, Gretna, LA 70056
Lyle Stockstill
LYLE STOCKSTILL CAMPAIGN
168 Ice House Rd, Buras, LA 70041
Lyle G. Stockstill
TORCH DEEPWATER, INC
401 Whitney Ave, Gretna, LA 70056 C/O Robert E Fulton, Gretna, LA 70056
Lyle Stockstill Chairman, Director, CEO
TORCH OFFSHORE INC Pipeline Transportation of Crude Oil
401 Whitney Ave STE 400, Gretna, LA 70056 (504)3677030, (504)3677075