An implantable prosthetic hip joint includes an acetabular shell component for securing the prosthetic joint within the acetabulum socket of a biological hip bone, and including an inner spherical surface, an open circumferential end and a plurality of apertures extending therethrough at the open circumferential end; an annular wedge retaining ring positioned within the acetabular shell component, the ring including a plurality of counter-sunk apertures therein in alignment with the apertures extending through the acetabular shell component; a hemispherical asymmetric socket insert in the acetabular shell component and including an outer spherical dome engaging the inner spherical surface of the acetabular shell component, an open circumferential end having an asymmetric lip thereat and an inner spherical surface, the outer spherical dome including a tapered surface for engagement with the wedge retaining ring; a femoral component having a femoral stem connected with the femur of a person and a femoral head connected with the femoral stem and received in the inner spherical surface of the socket insert for ball-and-socket movement therein; and a plurality of screws inserted through the apertures of the wedge retaining ring and acetabular shell component and threadedly received within the hip bone so as to force the wedge retaining ring inwardly to compress the socket insert and retain the same within the acetabular shell component in a fixed position, and loosening of these screws permits universal rotational adjustment of the socket insert in the acetabular shell comoponent.
A system of three femoral components with the same distal diameter, for a hip joint prosthesis, includes an intramedullary stem for each femoral component, each stem having a distal end, a proximal end, a lateral side extending between the distal and proximal ends, and a medial side extending between the distal and proximal ends opposite to the lateral side, the medial side at a proximal portion of the stem having a concave curvature; a neck mounted to the proximal end of each stem; a femoral ball component mounted at the proximal end of each neck, each femoral ball component having an articular center; the medial sides at the proximal portions of all of the stems substantially being in exact alignment only when the intramedullary stems are offset in the lengthwise direction from each other, thereby permitting a consistent fit within a given femur and achieving different positions of the articular centers of the femoral ball components, since the medial sides at the proximal ends of all of the stems are given distal diameter have the same radius of curvature, and with the stems incorporating the same proximal-medial radius of curvature for a given distal diameter reflecting consecutive larger proximal-transverse stem widths for addressing a consistent, light mechanical press-fit into femurs of different physiological sizes.
Mark R. Forte - Pine Brook NJ Douglas G. Noiles - New Canaan CT
Assignee:
Joint Medical Products Corporation - Stamford CT
International Classification:
A61F 238 A61F 230
US Classification:
623 20
Abstract:
A prosthetic knee joint is provided having an extended position, an intermediate position, and a flexed position. The motion of the joint includes a minor segment from the extended position to the intermediate position, and a major segment from the intermediate position to the flexed position. The center of pressure between the femoral component and the tibial component moves rearward on the tibia during the minor segment. During the major segment, the joint flexes about an axis of rotation with the bearing surfaces on the femoral and tibial components being in congruent engagement. The distal surface of the femoral component includes two rails for engagement with a patellar prosthesis. The contour of the rails is either a straight line or a concave curve to provide line contact between the rails and the patellar prosthesis. In certain embodiments, the patellar prosthesis has a saddle-shaped surface so that the prosthesis and each of the rails can make contact over an area extending along the length of the rail.
Mark R. Forte - Pine Brook NJ Douglas G. Noiles - New Canaan CT
Assignee:
Joint Medical Products Corporation - Stamford CT
International Classification:
A61F 238
US Classification:
623 20
Abstract:
A prosthetic knee joint is provided having an extended position, an intermediate position, and a flexed position. The motion of the joint includes a minor segment from the extended position to the intermediate position, and a major segment from the intermediate position to the flexed position. The center of pressure between the femoral component and the tibial component moves rearward on the tibia during the minor segment. During the major segment, the joint flexes about an axis of rotation with the bearing surfaces on the femoral and tibial components being in congruent engagement. The distal surface of the femoral component includes two rails for engagement with a patellar prosthesis. The contour of the rails is either a straight line or a concave curve to provide line contact between the rails and the patellar prosthesis. In certain embodiments, the patellar prosthesis has a saddle-shaped surface so that the prosthesis and each of the rails can make contact over an area extending along the length of the rail.
Total Knee Prosthesis With Resurfacing And Posterior Stabilization Capability
A resurfacing type of total knee prosthesis is disclosed which also provides a posterior stabilization function over the entire range of flexion. The knee prosthesis provides primary or supplementary posterior stabilization of the reconstructed knee joint by means of a unique mechanical cam/follower mechanism, which is integrated within the medial and lateral distal condyles of the femoral component to provide functional compensation for lost, resected or incompetent posterior cruciate ligaments or to work in conjunction with surgically retained viable or questionably viable cruciate ligament structures of the reconstructed knee joint. The invention extends to prostheses including a hinge means that defines a posterior stabilization means separate from that defined by the condyles. One embodiment of the invention extends individually to the posterior stabilizing hinge means.
An implant for a hip or other joint is provided. Briefly stated, an intramedullary stem is provided having flexibility which is comparable to that of the surrounding bone. A bore is disposed in the stem portion with the stem wall thickness uniform or varying from the proximal end to the distal end, depending upon the amount of flexibility desired. This flexibility therefore distributes the loading forces from the joint more uniformly over the supporting cortical bone with the result that bone degeneration from stress shielding is minimized or eliminated.
A posterior stabilized knee prosthesis includes a femoral component formed by medial and lateral condyles, each having an anterior portion, a distal portion and a posterior portion, an anterior patella flange interconnecting the anterior portions of the medial and lateral condyles in parallel, spaced apart relation, and a cam member connected to the lateral surface of the posterior portion of the medial condyle and to the medial surface of the posterior portion of the lateral condyle and having a convex cam surface; a tibial component including a multi-radius medial and lateral tibial plateau bearing surfaces for receiving the medial and lateral condyles for rolling and sliding movement thereon, and a follower member positioned between the medial and lateral tibial plateau bearing surfaces for receiving the cam surface for rotational and sliding movement thereon; the cam surface being in contact with the follower member for substantially the entire flexion range of the knee, with the cam surface being in congruent contact with the follower member from approximately the end of posterior rollback at approximately 25. degree. -30. degree. of flexion to full-flexion; and the cam surface being in sliding contact with the follower member to provide the posterior rollback of the convex cam surface during flexion, starting at approximately -6. degree. (hyperextension) of flexion and ending at approximately 25. degree. -30. degree.
A resurfacing type of total knee prosthesis is disclosed which also provides a posterior stabilization function over the entire range of flexion. The knee prosthesis provides primary or supplementary posterior stabilization of the reconstructed knee joint by means of a unique mechanical cam/follower mechanism, which is integrated within the medial and lateral distal condyles of the femoral component to provide functional compensation for lost, resected or incompetent posterior cruciate ligaments or to work in conjunction with surgically retained viable or questionably viable cruciate ligament structures of the reconstructed knee joint. The invention extends to prostheses including a hinge connection that defines a posterior stabilization construction separate from that defined by the condyles. One embodiment of the invention extends individually to the posterior stabilizing hinge assembly.
IT Director at Bucks County Free Library, Owner at Mark Forte Consulting (Self-employed)
Location:
Doylestown, Pennsylvania
Industry:
Information Technology and Services
Work:
Bucks County Free Library - 150 South Pine Street, Doylestown, PA 18901 since Nov 2012
IT Director
Mark Forte Consulting - Reading, PA since Jun 2002
Owner
Distributed Systems Services, Inc. (DSS) - Wyomissing, PA Sep 2011 - Nov 2012
Service Delivery Leader
Kutztown University - Kutztown, PA Nov 2007 - Sep 2011
IT Specialist/Help Desk Supervisor
Berks Technical Institute 2004 - 2006
Instructor
Education:
Kutztown University of Pennsylvania
Skills:
IT Management Organizational Leadership Team Leadership Project Management Adult Education Higher Education ITIL Linux System Administration Windows Server Active Directory Web Development Open Source PHP MySQL Microsoft Office Microsoft SQL Server Xenserver VMware ESX Python Perl Script JavaScript JSON Troubleshooting Networking Training Technical Support Windows 7 Disaster Recovery Customer Service Project Planning Software Documentation
2008 to 2000 Box AttendantThe College of Westchester White Plains, NY Sep 2011 to Dec 2011 Internship
Education:
The College of Westchester White Plains, NY 2011 Bachelor in Business Administration and Project ManagementThe College Of Westchster White Plains, NY 2008 to 2010 Assoicate in Applied Sciences
Skills:
Graphics Design, Project Management, Digital Media
Real Estate Brokers
Mark Forte, Pine Brook NJ Real Estate Broker/Sales Associate