The present invention is directed towards classifying tumor biomarkers, particularly membrane receptors, and more particularly the gastrin-releasing peptide (GPR) receptors, identified in patient samples, then linking therapeutic agents (chemical, radiological, or biological) to patient-specific ligands that bind to such receptors, clinicians can produce diagnostic and treatment compositions and implement treatment regimens which, by using the classified and identified biomarkers, and due to their improved accuracy, increase success and decrease undesired side effects from such treatments.
Nitrated Non-Cyclic N-Alkane Scaffolds With Differentiated-Mean Combustive Equivalencies As High Energy Density Fuel Improvers
A non-ring, non-alkene, nitrated n-alkane base scaffold combined with at least one trioxynitrate provides a differentiated-mean combustive performance in a stabilized and sufficiently polar molecule as to be miscible, and thus serve as a high-energy-density component of a fuel additive that, when mixed with existing fuels at appropriate dilution ratios, will impart equivalent combustive efficiency to that of standardized, petroleum distillate, gasoline and diesel in various blends including aviation fuel and heating oil over the full-temperature-range of use; and a specific embodiment of this non-ring, non-alkene nitrated n-alkane base scaffold is described which, when blended with a petroleum diesel, biodiesel, or combination of B-20 standard biodiesel (80% diesel, 20% biodiesel) wherein the additive comprises less than 5% of the total mix, produces at least a 10% or greater combustive energy density as compared to the base fuel.
Liquid Methanol Fuel Production From Methane Gas At Bio-Normal Temperatures And Presure
Through staged and monitored control of gas, liquid, and solid source materials, the highly-efficient enzymatic ‘natural factory’ of specific methanotropic bacteria, which evolved dual, alternative, metabolic channels, can be manipulated for human goals. The first stage sets these bacteria to producing liquid methanol by oxidation of methane gas under aerobic conditions (their high-energy channel), which is harvested at the peak. The second stage, by establishing anaerobic conditions and providing supplementary metals, forces the bacteria to use their lower-energy channel for inorganic hydrogen-donor to organic-energy-transport, during which the older and weaker organisms become ‘food’ for newer and (relatively) stronger organisms. This accomplishes the desired result of liquid methanol production without employing a human-engineered industrial-chemical process with the costly high energy requirements associated with temperatures and pressures required by the prior art for converting methane gas to liquid methanol.
Synergistically-Reactive Synthetic Fuel That Enhances Mechanical Energy Output From Internal Combustion Engines
A fuel additive comprising a core polar material blended with a stabilizing and enhancing combustive mixture, which pairing is further combined with a base combustive fuel, to form a synthetic fuel that, in an internal combustion engine, releases and combines combustive and detonative potential energy so as to produce more effective torque on the engine's drive piston than can be obtained from combustion alone. The base combustive fuel's heat energy not used to work the IC engine synergistically powers the fuel additive's solvation and detonative or explosive endothermic reactions.
Method, Compositions And Classification For Tumor Diagnostics And Treatment
The present invention is directed towards classifying tumor biomarkers, particularly membrane receptors, and more particularly the gastrin-releasing peptide (GPR) receptors, identified in patient samples, then linking therapeutic agents (chemical, radiological, or biological) to patient-specific ligands that bind to such receptors, clinicians can produce diagnostic and treatment compositions and implement treatment regimens which, by using the classified and identified biomarkers, and due to their improved accuracy, increase success and decrease undesired side effects from such treatments.
A system and method for efficient thermoelectric power generation by combining natural gas as a thermal source with emitters, such as Silicon Carbide, highly-doped Silicon Carbide semiconductor material as cells, harvesting of electric power through in situ formation of Graphene Carbon, and semiconductor materials. The system is can yield orders of magnitude greater power efficiency over thermoelectric power generation units used in space travel, by practicing the invention, natural gas, such as the 288.7 billion cubic currently wasted by the environmental damaging practice of flaring off, can be converted into useful electricity for transport over low-cost transmission line infrastructure rather than possible future high-cost pipelines. Also, by practicing the invention, households can be provided with standby power, power during natural disasters, such as hurricanes, by converting available natural or propane gas rather relying on generators with single digit efficiency.
Graphene-And Hexagonal Boron Nitride Van Der Waals Heterostructured Solar Energy Processing Unit
A solar processing unit (SPU) for the conversion of solar energy to electric power includes a heterostructure of sheets of two (2)-dimensional materials. The heterostructure is utilized to produce a crystalline structure, wherein elemental Boron (B) and elemental Nitrogen (N), contained in sheets of hexagonal Boron Nitride (hBN), are located as bookends to one or more Carbons (C)s, between at least one sheet of Graphene. Each absorbed photon produces Multi-Excitation Generation, wherein more than one electron is generated. The SPU produces a spin motion of the Boron atoms in one direction and the Nitrogen atoms in the opposite direction within hBN by placing an external fixed magnetic field perpendicular to the sheet of hBN and a second orthogonal magnetic field paired to the strength of the fixed magnetic field and tuned to the resonant magnetic frequency of Nitrogen-15 followed by Boron-11, thereby achieving the spin required for enhanced photonic absorption.
A system and method for the synthesis of light-nuclei elements (LNEs), including the battery element Lithium, in high-purity form. The method eliminates the need for high-energy proton collision in Cosmic Rays to produce Nitrogen-15. LNEs are produced by placing a mixture with carbon, nitrogen, and oxygen (CNO) source material in a strong, fixed magnetic field (), then introducing instability to the CNO's stable isotopes through high-frequency radio waves tuned to the nuclear magnetic resonance (NMR) frequency of a target material in the mixture to produce a LNE product material, and then separating the LNE product material from other materials within the mixture by enhancing gravity separation based on the opposite signs of respective dipole magnetic moments (DMM) to cause attraction of the product material, such as Lithium, to the South magnetic pole away from another product material, such as Beryllium, that is attracted to the North magnetic pole.