Terry E. Flach - Altadena CA Michael D. Stoop - Aliso Viejo CA
Assignee:
GE Medical Systems Information Technologies, Inc. - Milwaukee WI
International Classification:
A61B 500
US Classification:
600300
Abstract:
A medical telemetry system is provided for collecting the real-time physiologic data of patients (including ambulatory patients) of a medical facility, and for transferring the data via RF to a real-time data distribution network for monitoring and display. The system includes battery-powered remote telemeters which attach to respective patients, and which collect and transmit (in data packets) the physiologic data of the patients. The remote telemeters communicate bi-directionally with a number of ceiling-mounted RF transceivers, referred to as âVCELLs,â using a wireless TDMA protocol. The VCELLs, which are hardwire-connected to a LAN, forward the data packets received from the telemeters to patient monitoring stations on the LAN. The VCELLs are distributed throughout the medical facility such that different VCELLs provide coverage for different patient areas. As part of the wireless TDMA protocol, the remote telemeters continuously assess the quality of the RF links offered by different nearby VCELLs (by scanning the frequencies on which different VCELLs operate), and connect to those VCELLs which offer the best link conditions.
Cellular Architecture And Data Transfer Methods For Real Time Patient Monitoring Within Medical Facilities
Terry E. Flach - Altadena CA Michael D. Stoop - Aliso Viejo CA
Assignee:
GE Medical Systems Information Technologies, Inc. - Milwaukee WI
International Classification:
A61B 500
US Classification:
600300, 128903
Abstract:
A real time patient monitoring system uses a cellular architecture to monitor ECG signals and other physiologic data of patients, including ambulatory patients. The system includes wireless telemeters that attach to and transmit the physiologic data of respective patients. The telemeters communicate bi-directionally with ceiling-mounted RF transceivers, referred to as âVCELLs,â using a wireless TDMA protocol. The VCELLs forward packets of physiologic data received from the telemeters to patient monitoring stations on a LAN. The VCELLs are spatially distributed throughout the medical facility to provide multiple cells or zones of coverage. As a patient moves throughout the medical facility, the patients telemeter connects to, and disconnects from, specific VCELLs to maintain connectivity to the LAN. The telemeters and VCELLs also implement a patient location tracking process for monitoring of the locations of individual patients.
Terry Flach - Altadena CA, US Michael Stoop - Aliso Viejo CA, US
International Classification:
A61B005/00 A61F002/02
US Classification:
600/300000, 128/903000
Abstract:
A medical telemetry system is provided for collecting the real-time physiologic data of patients (including ambulatory patients) of a medical facility, and for transferring the data via RF to a real-time data distribution network for monitoring and display. The system includes battery-powered remote telemeters which attach to respective patients, and which collect and transmit (in data packets) the physiologic data of the patients. The remote telemeters communicate bi-directionally with a number of ceiling-mounted RF transceivers, referred to as “VCELLs,” using a wireless TDMA protocol. The VCELLs, which are hardwire-connected to a LAN, forward the data packets received from the telemeters to patient monitoring stations on the LAN. The VCELLs are distributed throughout the medical facility such that different VCELLs provide coverage for different patient areas. As part of the wireless TDMA protocol, the remote telemeters continuously assess the quality of the RF links offered by different nearby VCELLs (by scanning the frequencies on which different VCELLs operate), and connect to those VCELLs which offer the best link conditions. To provide a high degree of protection against multi-path interference, each remote telemeter maintains connections with two different VCELLs at-a-time, and transmits all data packets (on different frequencies and during different timeslots) to both VCELLs; the system thereby provides space, time and frequency diversity on wireless data packet transfers from the telemeters. The telemeters and VCELLs also implement a patient location protocol for enabling the monitoring of the locations of individual patients. The architecture can accommodate a large number of patients (e.g., 500 or more) while operating within the transmission power limits of the VHF medical telemetry band.
Two-Way Tdma Telemetry System With Power Conservation Features
Terry E. Flach - Altadena CA Michael D. Stoop - Aliso Viejo CA
Assignee:
Vitalcom, Inc. - Tustin CA
International Classification:
G08C 1972
US Classification:
34087007
Abstract:
A two-way medical telemetry system is provided for displaying and monitoring, at a central location, physiologic and other patient data of multiple, remotely-located patients. The system comprises multiple battery-powered remote telemeters, each of which is worn by a respective patient, and a central station which receives, displays and monitors the patient data received (via RF) from the remote telemeters. The telemeters communicate with the central station using a two-way TDMA protocol which permits the time sharing of timeslots, and which uses a contention slot to permit telemeters to transmit service requests to the central station. Two-way spacial diversity is provided using only one antenna and one transceiver on each remote telemeter. The remote telemeters include circuitry for turning off the active transceiver components thereof when not in use (to conserve battery power), and include circuitry for performing a rapid, low-power frequency lock cycle upon power-up. The system has multiple modes of operation, including a frequency hopping (spread spectrum) mode and a fixed frequency mode, both of which preferably make use of the 902-928 MHz ISM band.
Terry E. Flach - Altadena CA Michael D. Stoop - Aliso Viejo CA
Assignee:
Vitalcom Inc. - Tustin CA
International Classification:
A61F 202
US Classification:
600300
Abstract:
A medical telemetry system is provided for collecting the real-time physiologic data of patients (including ambulatory patients) of a medical facility, and for transferring the data via RF to a real-time data distribution network for monitoring and display. The system includes battery-powered remote telemeters which attach to respective patients, and which collect and transmit (in data packets) the physiologic data of the patients. The remote telemeters communicate bi-directionally with a number of ceiling-mounted RF transceivers, referred to as "VCELLs," using a wireless TDMA protocol. The VCELLs, which are hardwire-connected to a LAN, forward the data packets received from the telemeters to patient monitoring stations on the LAN. The VCELLs are distributed throughout the medical facility such that different VCELLs provide coverage for different patient areas. As part of the wireless TDMA protocol, the remote telemeters continuously assess the quality of the RF links offered by different nearby VCELLs (by scanning the frequencies on which different VCELLs operate), and connect to those VCELLs which offer the best link conditions.
Telemeter Design And Data Transfer Methods For Medical Telemetry System
Terry E. Flach - Altadena CA Michael D. Stoop - Aliso Viejo CA
Assignee:
Vitalcom, Inc. - Tustin CA
International Classification:
A61B 500 A61F 202
US Classification:
600300
Abstract:
A medical telemetry system is provided for collecting the real-time physiologic data of patients (including ambulatory patients) of a medical facility, and for transferring the data via RF to a real-time data distribution network for monitoring and display. The system includes battery-powered remote telemeters which attach to respective patients, and which collect and transmit (in data packets) the physiologic data of the patients. The remote telemeters communicate bi-directionally with a number of ceiling-mounted RF transceivers, referred to as "VCELLs," using a wireless TDMA protocol. The VCELLs, which are hardwire-connected to a LAN, forward the data packets received from the telemeters to patient monitoring stations on the LAN. The VCELLs are distributed throughout the medical facility such that different VCELLs provide coverage for different patient areas. As part of the wireless TDMA protocol, the remote telemeters continuously assess the quality of the RF links offered by different nearby VCELLs (by scanning the frequencies on which different VCELLs operate), and connect to those VCELLs which offer the best link conditions.
SYDNEY NSWOrdained in St Mary's Cathedral, Sydney on 8 June 2001.
First Appointment: Assistant Priest at "All Saints' Parish", Liverpool 17 June 2001 to 1 December 2003
... Ordained in St Mary's Cathedral, Sydney on 8 June 2001.
First Appointment: Assistant Priest at "All Saints' Parish", Liverpool 17 June 2001 to 1 December 2003
Current Appointments: Assistant to the Dean, "St Mary's Cathedral", Sydney 2 December to present. Also the Archdiocesan Director of...