- Palmyra NY, US Patrick Robertson - Thornton CO, US David Wittekind - Lafayette CO, US T. Scott Tanner - Rochester NY, US
International Classification:
F16L 23/18 F16J 15/06
Abstract:
Gasket seals for high pressure applications include retaining elements with inner diameter seal elements that interlock with the retaining element to provide resistance to movement in both axial and radial directions between the retaining element and seal element. High pressure sealing may be accomplished using a metallic core retaining element to which an electrically isolating material is bonded on either or both sides. Sealing is achieved through an inner diameter dielectric sealing element, such as a polytetrafluoroethylene (PTFE) inner diameter sealing ring. Flanges of a joint in a fluid flow ling may be bolted together with the gasket seal interposed therebetween. In the event of pressure changes, the inner diameter seal resists being drawn into the flow line, and resists axial movement relative to the retaining element, through dual locking members that secure the seal to the retaining element.
Sealing System Having Interlocking Inner Diameter Seal Element To Resist Pressure Changes
- Palmyra NY, US Patrick Robertson - Thornton CO, US David Wittekind - Lafayette CO, US T. Scott Tanner - Rochester NY, US
International Classification:
F16L 23/18 F16L 23/036 F16J 15/06
Abstract:
Gasket seals for high pressure applications include retaining elements with inner diameter seal elements that interlock with the retaining element to provide resistance to movement in both axial and radial directions between the retaining element and seal element. High pressure sealing may be accomplished using a metallic core retaining element to which an electrically isolating material is bonded on either or both sides. Sealing is achieved through an inner diameter dielectric sealing element, such as a polytetrafluoroethylene (PTFE) inner diameter sealing ring. Flanges of a joint in a fluid flow ling may be bolted together with the gasket seal interposed therebetween. In the event of pressure changes, the inner diameter seal resists being drawn into the flow line, and resists axial movement relative to the retaining element, through dual locking members that secure the seal to the retaining element.