Arnon Gat - Palo Alto CA Bob Bogart - Pacifica CA Conor Patrick OCarroll - Sunneyvale CA Paul Janis Timans - Mountain View CA Shuen Chun Choy - San Francisco CA Zion Koren - Cupertino CA Chris Francis Bragg - Oakland CA
Assignee:
Mattson Technology, Inc. - Fremont CA
International Classification:
H01L 2100
US Classification:
2504922, 392416, 219411
Abstract:
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. The light energy sources can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be either active sources of light energy or passive sources which reflect, refract or absorb light energy. For instance, in one embodiment, the tuning devices can comprise a lamp spaced from a focusing lens designed to focus determined amounts of light energy onto a particular location of a wafer being heated.
Apparatus And Method For Reducing Stray Light In Substrate Processing Chambers
A method and apparatus for heating semiconductor wafers in thermal processing chambers. The apparatus includes a non-contact temperature measurement system that utilizes radiation sensing devices, such as pyrometers, to determine the temperature of the wafer during processing. The radiation sensing devices determine the temperature of the wafer by monitoring the amount of radiation being emitted by the wafer at a particular wavelength. In accordance with the present invention, a spectral filter is included in the apparatus for filtering light being emitted by lamps used to heat the wafer at the wavelength at which the radiation sensing devices operate. The spectral filter includes a light absorbing agent such as a rare earth element, an oxide of a rare earth element, a light absorbing dye, a metal, or a semiconductor material.
Pulsed Processing Semiconductor Heating Methods Using Combinations Of Heating Sources
Pulsed processing methods and systems for heating objects such as semiconductor substrates feature process control for multi-pulse processing of a single substrate, or single or multi-pulse processing of different substrates having different physical properties. Heat is applied a controllable way to the object during a background heating mode, thereby selectively heating the object to at least generally produce a temperature rise throughout the object during background heating. A first surface of the object is heated in a pulsed heating mode by subjecting it to at least a first pulse of energy. Background heating is controlled in timed relation to the first pulse. A first temperature response of the object to the first energy pulse may be sensed and used to establish at least a second set of pulse parameters for at least a second energy pulse to at least partially produce a target condition.
Pulsed Processing Semiconductor Heating Methods Using Combinations Of Heating Sources
Pulsed processing methods and systems for heating objects such as semiconductor substrates feature process control for multi-pulse processing of a single substrate, or single or multi-pulse processing of different substrates having different physical properties. Heat is applied a controllable way to the object during a background heating mode, thereby selectively heating the object to at least generally produce a temperature rise throughout the object during background heating. A first surface of the object is heated in a pulsed heating mode by subjecting it to at least a first pulse of energy. Background heating is controlled in timed relation to the first pulse. A first temperature response of the object to the first energy pulse may be sensed and used to establish at least a second set of pulse parameters for at least a second energy pulse to at least partially produce a target condition.
Heating Configuration For Use In Thermal Processing Chambers
Zion Koren - Sunnyvale CA, US Conor Patrick O'Carroll - Sunnyvale CA, US Shuen Chun Choy - San Francisco CA, US Paul Janis Timans - Mountain View CA, US Rudy Santo Tomas Cardema - San Jose CA, US James Tsuneo Taoka - San Jose CA, US Arieh A. Strod - Cupertino CA, US
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
System And Process For Heating Semiconductor Wafers By Optimizing Absorption Of Electromagnetic Energy
Various processes for heating semiconductor wafers is disclosed. In particular, the present invention is directed to configuring light sources emitting light energy onto a wafer in order to optimize absorption of the energy by the wafer. Optimization is carried out by varying the angle of incidence of the light energy contacting the wafer, using multiple wavelengths of light, and configuring the light energy such that it contacts the wafer in a particular polarized state. In one embodiment, the light energy can be emitted by a laser that is scanned over the surface of the wafer.
As part of a system for processing a workpiece by applying a controlled heat to the workpiece, a heating arrangement includes an array of spaced apart heating elements for use in a confronting relationship with the workpiece to subject the workpiece to a direct radiation that is produced. A radiation shield includes a plurality of members supported for movement between (i) retracted positions, which allow the direct radiation to reach the workpiece, and (ii) extended positions, in which the plurality of members cooperate in way which serves to at least partially block the direct radiation from reaching the workpiece and to absorb radiation emitted and reflected by the workpiece and thereby achieve greater control of the time-temperature profile than previously obtainable. At least certain ones of the members move between adjacent ones of the heating elements in moving those certain members between the retracted and extended positions. Tubular, curved and plate-like member configurations can be used.
Selective Reflectivity Process Chamber With Customized Wavelength Response And Method
Paul J. Timans - Mountain View CA, US Daniel J. Devine - Los Gatos CA, US Young Jai Lee - Sunnyvale CA, US Yao Zhi Hu - San Jose CA, US Peter C. Bordiga - Petaluma CA, US
A customizable chamber spectral response is described which can be used at least to tailor chamber performance for wafer heating, wafer cooling, temperature measurement, and stray light. In one aspect, a system is described for processing a treatment object having a given emission spectrum at a treatment object temperature which causes the treatment object to produce a treatment object radiated energy. The chamber responds in a first way to the heating arrangement radiated energy and in a second way to the treatment object radiated energy that is incident thereon. The chamber may respond in the first way by reflecting the majority of the heat source radiated energy and in the second way by absorbing the majority of the treatment object radiated energy. Different portions of the chamber may be treated with selectively reflectivity based on design considerations to achieve objectives with respect to a particular chamber performance parameter.
Youtube
Paul C Tim and Barber Gain Changer (and some ...
First of all, this is not a demo, it's just me wanking while I was on ...