- Lake Forest CA, US Ricardo Salas - Lake Forest CA, US Evelina Vogli - Lake Forest CA, US
International Classification:
C22C 45/02 B22F 1/05 B33Y 70/00
Abstract:
Embodiments disclosed herein relate to the production of amorphous metals having compositions of iron, chromium, molybdenum, carbon and boron for usage in additive manufacturing, such as in layer-by-layer deposition to produce multi-functional parts. Such parts demonstrate ultra-high strength without sacrificing toughness and also maintain the amorphous structure of the materials during and after manufacturing processes. Two additive manufacturing techniques are provided: (1) the complete melting of amorphous powder and re-solidifying to amorphous structure to eliminate the formation of crystalline structure therein by controlling a heating source power and cooling rate without affecting previous deposited layers; and (2) partial melting of the outer surface of the amorphous powder, and solidifying powder particles with each-other without undergoing a complete melting stage. Amorphous alloy compositions have oxygen impurities in low concentration levels to optimize glass forming ability (GFA). Specific techniques of additive manufacturing include those based on lasers, electron beams and ultrasonic sources.
An embodiment relates to a cladded composite comprising a cladding layer of a bulk metallic glass and a substrate; wherein the bulk metallic glass comprises approximately 0% crystallinity, approximately 0% porosity, less than 50 MPa thermal stress, approximately 0% distortion, approximately 0 inch heat affected zone, approximately 0% dilution, and a strength of about 2,000-3,500 MPa.
Ultrasonic Additive Manufacturing Of Cladded Amorphous Metal Products
An embodiment relates to an ultrasonic additive manufacturing process, comprising joining a foil comprising a bulk metallic glass to a substrate; and forming a cladded composite comprising the foil and the substrate; wherein a thickness of the cladded composite is greater than a critical casting thickness of the bulk metallic glass, wherein the cladded composite comprises a cladding layer of the bulk metallic glass on the substrate and the bulk metallic glass comprises approximately 0% crystallinity, approximately 0% porosity, less than 50 MPa thermal stress, approximately 0% distortion, approximately 0 inch heat affected zone, approximately 0% dilution, and a strength of about 2,000-3,500 MPa.
System And Method For Applying Amorphous Metal Coatings On Surfaces For The Reduction Of Friction
- Lake Forest CA, US Evelina VOGLI - Lake Forest CA, US Ricardo SALAS - Lake Forest CA, US
International Classification:
C22C 45/00 C23C 4/08 E21B 17/10
Abstract:
An embodiment relates to a composition comprising an amorphous alloy having a low coefficient of friction (COF) of 0.15 or less, wherein the amorphous alloy is substantially free of phosphor (P) and substantially free of boron (B). An embodiment relates to a method comprising solidifying a molten layer of an amorphous feedstock on a preexisting layer by controlling a heating source and a cooling rate so as to avoid formation of crystals in the molten layer and not affect a crystalline structure of the preexisting layer, and forming a specimen; wherein, the at least a portion specimen has the low COF. Another embodiment relates to a system comprising a drill string, wherein the drill string comprises a drilling bit and a drill pipe connected thereto, wherein at least a portion of the drill pipe comprises a coating having the low COF.
Additive Manufacturing Of Iron-Based Amorphous Metal Alloys
Embodiments disclosed herein relate to the production of amorphous metals having compositions of iron, chromium, molybdenum, carbon and boron for usage in additive manufacturing, such as in layer-by-layer deposition to produce multi-functional parts. Such parts demonstrate ultra-high strength without sacrificing toughness and also maintain the amorphous structure of the materials during and after manufacturing processes. Two additive manufacturing techniques are provided: (1) the complete melting of amorphous powder and re-solidifying to amorphous structure to eliminate the formation of crystalline structure therein by controlling a heating source power and cooling rate without affecting previous deposited layers; and (2) partial melting of the outer surface of the amorphous powder, and solidifying powder particles with each-other without undergoing a complete melting stage. Amorphous alloy compositions have oxygen impurities in low concentration levels to optimize glass forming ability (GFA). Specific techniques of additive manufacturing include those based on lasers, electron beams and ultrasonic sources.
- Lake Forest CA, US John Kang - Lake Forest CA, US Ricardo Salas - Lake Forest CA, US
International Classification:
B32B 15/04 B32B 15/01 B32B 7/04
Abstract:
An embodiment relates to a cladded composite comprising a cladding layer of a bulk metallic glass and a substrate; wherein the bulk metallic glass comprises approximately 0% crystallinity, approximately 0% porosity, less than 50 MPa thermal stress, approximately 0% distortion, approximately 0 inch heat affected zone, approximately 0% dilution, and a strength of about 2,000-3,500 MPa.
Ultrasonic Additive Manufacturing Of Cladded Amorphous Metal Products
- Lake Forest CA, US - Columbus OH, US Ricardo SALAS - Lake Forest CA, US Adam HEHR - Columbus OH, US
International Classification:
B23K 20/10 C22C 16/00 C22C 19/05 C22C 14/00
Abstract:
An embodiment relates to an ultrasonic additive manufacturing process, comprising joining a foil comprising a bulk metallic glass to a substrate; and forming a cladded composite comprising the foil and the substrate; wherein a thickness of the cladded composite is greater than a critical casting thickness of the bulk metallic glass, wherein the cladded composite comprises a cladding layer of the bulk metallic glass on the substrate and the bulk metallic glass comprises approximately 0% crystallinity, approximately 0% porosity, less than 50 MPa thermal stress, approximately 0% distortion, approximately 0 inch heat affected zone, approximately 0% dilution, and a strength of about 2,000-3,500 MPa.
Name / Title
Company / Classification
Phones & Addresses
Ricardo A. Salas Managing
Cornerstone Partners, LLC
64 Ritz Cv Dr, Dana Point, CA 92629 3906 W San Carlos St, Tampa, FL 33629
bigail Batten, Hope Bernier, Madeleine Bourgeois, Cadin Chung, Kali Dancisak, Amanda Duong, Alexandra Edwards, David Fried, Hannah Guichet, Justin Hugger, David Hutton, Lincoln Kamenides, Sophie Luketich, Megan Marsalone, Lisa Pham, Mary Ponti, Brynna Robert, Gabrielle Rome, Sarah Rooks, Ricardo Salas