An ion fusion formation (IFF) system uses a plasma welding torch to create ions that heat feedstock for application at a deposition point. A plasma welding torch may use argon gas or the like in order to provide extremely hot ions that impact or collide with the feedstock in order to melt it and enabling application of the melted feedstock to a deposition point on a workpiece. By positioning the workpiece, wire feeder, and/or welding torch, parts, devices, or components can be built in almost any three-dimensional shape. Parts can be manufactured in a âjust-in-time fashionâ with high precision and predictable performance.
An alloy based on a refractory metal such as rhenium resists oxidation by the inclusion of alloying substances with affinity for oxygen or other oxidizing substances. This alloy has excellent high temperature strength and will resist oxidation. The alloy includes oxidation resistant substances, such as soluble metals, that attract oxygen and may form a protective oxide layer over the remaining portion of the rhenium-alloy part or piece. Such soluble alloying constituents may include chromium, cobalt, nickel, titanium, thorium, aluminum, hafnium, vanadium, silicon, aluminum, and yttrium.
Oxidation And Wear Resistant Rhenium Metal Matrix Composites
An alloy and metal matrix composite (MMC) based on a refractory metal such as rhenium resists oxidation by the inclusion of alloying substances with affinity for oxygen or other oxidizing substances. Rhenium enjoys excellent high temperature strength but oxidizes at a much lower temperature. This reduces its desirability for hot, stressed environments. The addition of substances, such as soluble metals, that attract oxygen may form a protective oxide layer over the remaining portion of the rhenium-alloy part or piece. Such soluble alloying constituents may include chromium, cobalt, nickel, titanium, thorium, aluminum, hafnium, vanadium, silicon, aluminum, and yttrium. The addition of second phase fiber or particulates such as carbides of silicon, tungsten, titanium and/or boron provides additional wear resistance in the formation of a resulting metal matrix composite (MMC).
Reduced Temperature And Pressure Powder Metallurgy Process For Consolidating Rhenium Alloys
Pressure powder metallurgy process for consolidating refractory or rhenium alloys using a reduced temperature and elevated pressure. Rhenium metal has high temperature strength and wear resistance but has a very high melting point as a pure metal and thus is difficult to use as a coating for many alloys having lower melting points. The reduced temperature and elevated pressure alloying process of the rhenium allows it to be used as a coating for other metal alloys, such as nickel and steel alloys, providing some high temperature and wear resistance due to the properties of the rhenium material in the coating.
Use Of Powder Metal Sintering/Diffusion Bonding To Enable Applying Silicon Carbide Or Rhenium Alloys To Face Seal Rotors
William L. Giesler - Phoenix AZ, US Robbie J. Adams - Phoenix AZ, US
Assignee:
Honeywell International, Inc. - Morristown NJ
International Classification:
B22F003/14 B22F005/00
US Classification:
419 10, 419 14, 419 19, 419 26, 419 48
Abstract:
A method for making aerospace face seal rotors reinforced by rhenium metal, alloy, or composite in combination with silicon carbide or other ceramic. The resulting rotor also is disclosed. Ceramic grains, preferably silicon carbide (SiC), are mixed with powdered metallic (PM) binder that may be based on a refractory metal, preferably rhenium. The mixture is applied to a rotor substrate. The combined ceramic-metal powder mixture is heated to sintering temperature under pressure to enable fusion of the ceramic in the resulting metal-based substrate. A load may then be applied under an elevated temperature. The resulting coated rotor can exhibit high hot hardness, increased durability and/or high hot wear resistance, as well as high thermal conductivity.
Flywheel Secondary Bearing With Rhenium Or Rhenium Alloy Coating
Robbie Adams - Phoenix AZ, US Todd Giles - Phoenix AZ, US Sharon Brault - Chandler AZ, US
Assignee:
Honeywell International, Inc. - Morristown NJ
International Classification:
H02K 7/09
US Classification:
310 905
Abstract:
A bearing for a high-speed and high-momentum rotating flywheel system for satellite or other applications that enables better recovery when unintended physical contact occurs. This better recovery is achieved through increased impact resistance and wear resistance by using a flat annulus connected to the main shaft of the primary bearing and secondary metal bearing and coating both annuli with rhenium or its alloys. Rhenium has a very high melting point but in the annealed condition is ductile so the rhenium coating is hardened to a very high strength and wear resistance but the rhenium beneath is still ductile. This combination of hard and soft material provides good wear resistance and impact resistance for those times when the primary bearing ceases to operate and contact is made with the secondary bearing.
Use Of Powder Metal Sintering/Diffusion Bonding To Enable Applying Silicon Carbide Or Rhenium Alloys To Face Seal Rotors
William L. Giesler - Phoenix AZ, US Robbie J. Adams - Phoenix AZ, US
Assignee:
Honeywell International, Inc. - Morristown NJ
International Classification:
B32B 15/04 B32B 15/18 B32B 5/18
US Classification:
428698, 428655, 428405, 4285395
Abstract:
A method for making aerospace face seal rotors reinforced by rhenium metal, alloy, or composite in combination with silicon carbide or other ceramic. The resulting rotor also is disclosed. Ceramic grains, preferably silicon carbide (SiC), are mixed with powdered metallic (PM) binder that may be based on a refractory metal, preferably rhenium. The mixture is applied to a rotor substrate. The combined ceramic-metal powder mixture is heated to sintering temperature under pressure to enable fusion of the ceramic in the resulting metal-based substrate. A load may then be applied under an elevated temperature. The resulting coated rotor can exhibit high hot hardness, increased durability and/or high hot wear resistance, as well as high thermal conductivity.
Reduced Temperature And Pressure Powder Metallurgy Process For Consolidating Rhenium Alloys
Pressure powder metallurgy process for consolidating refractory or rhenium alloys using a reduced temperature and elevated pressure. Rhenium metal has high temperature strength and wear resistance but has a very high melting point as a pure metal and thus is difficult to use as a coating for many alloys having lower melting points. The reduced temperature and elevated pressure alloying process of the rhenium allows it to be used as a coating for other metal alloys, such as nickel and steel alloys, providing some high temperature and wear resistance due to the properties of the rhenium material in the coating.