Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.