Nanoparticles are functionalized for use as bio-imaging probes using a novel, modular approach. Particle surface modification is based on a phosphonate monolayer platform on which was built a multi-segmented, multi-functional film: the first segment provided hydrolytic stability, the second aqueous suspendability, and the third, selectivity for cell attachment. In vitro imaging experiments visualized nanoparticle—cell surface binding. Peptide-derivatized nano-particles were not displaced from cells by soluble peptide. Methods for coating the host particles and use of rare earth ion-doped particles in imaging methods and photodynamic therapy methods are also disclosed.
Functionalized Substrates And Methods Of Making Same
Jeffrey Schwartz - Princeton NJ, US Thomas J. Dennes - Parkesburg PA, US
Assignee:
PRINCETON UNIVERSITY - Princeton NJ
International Classification:
B32B 27/06 B05D 3/06 B05D 3/02 B05D 5/10
US Classification:
428704, 427553, 427557, 4272071
Abstract:
Polymer substrates including adhesion layers for activating the surface of the substrate are provided, thereby allowing the substrate to react with organic, inorganic, metallic and/or organometallic materials. The surface of the polymer substrate is coated with a metal oxide layer that is subjected to conditions adequate to form an oxide adhesion layer. Combining deposition techniques for formation of functionalized polymer surfaces with photolithographic techniques enables spatial control of RGD presentation at the polymer surfaces are achieved with sub-cellular resolution. Surface patterning enables control of cell adhesion location at the surface of the polymer and influences cell shape. Metallization of polymers as described herein provides a means to prepare metal-based electrical circuitry on a variety of flexible substrates.
Functionalized Substrates And Methods Of Making Same
- Princeton NJ, US Thomas J. Dennes - Parkesburg PA, US
International Classification:
A61L 27/30 A61L 27/18 C23C 18/12
Abstract:
Polymer substrates including adhesion layers for activating the surface of the substrate are provided, thereby allowing the substrate to react with organic, inorganic, metallic and/or organometallic materials. The surface of the polymer substrate is coated with a metal oxide layer that is subjected to conditions adequate to form an oxide adhesion layer. Combining deposition techniques for formation of functionalized polymer surfaces with photolithographic techniques enables spatial control of RGD presentation at the polymer surfaces are achieved with sub-cellular resolution. Surface patterning enables control of cell adhesion location at the surface of the polymer and influences cell shape. Metallization of polymers as described herein provides a means to prepare metal-based electrical circuitry on a variety of flexible substrates.