Disclosed is a structure made of a trench patterned substrate having a pre-determined trench period and a pre-determined mesa to trench width ratio, and a block copolymer on top of the trench patterned substrate. The block copolymer has at least an organic block and a silicon-containing block, wherein the block copolymer can have either perpendicular or parallel cylinders. The structure is annealed under a pre-determined vapor pressure for a predetermined annealing time period, wherein the pre-determined trench period, the pre-determined mesa to trench width ratio, the predetermined vapor pressure and the predetermined annealing time period are chosen such that cylinders formed in the block copolymer are either perpendicular or parallel with respect to the trench-patterned substrate. A method is also described to form the above-mentioned structure.
Guided Self-Assembly Of Block Copolymer Line Structures For Integrated Circuit Interconnects
Joel K. W. Yang - Research Link, SG Karl K. Berggren - Delft, NL Yeon Sik Jung - Cambridge MA, US Caroline A. Ross - Arlington MA, US
Assignee:
Massachusetts Institute of Technology - Cambridge MA
International Classification:
G03F 1/50 H01L 21/31 H01L 21/469
US Classification:
430 5, 216 49, 438947
Abstract:
Complex self-assembled patterns can be created using a sparse template and local changes to the shape or distribution of the posts of the template to direct pattern generation of block copolymer. The post spacing in the template is formed commensurate with the equilibrium periodicity of the block copolymer, which controls the orientation of the linear features. Further, the posts can be arranged such that the template occupies only a few percent of the area of the final self-assembled patterns. Local aperiodic features can be introduced by changing the period or motif of the lattice or by adding guiding posts. According to one embodiment, an array of carefully spaced and shaped posts, prepared by electron-beam patterning of an inorganic resist, can be used to template complex patterns in a cylindrical-morphology block copolymer. These complex self-assembled patterns can form a mask used in fabrication processes of arbitrary structures such as interconnect layouts.