Methods for forming a nanoperforated graphene material are provided. The methods comprise forming an etch mask defining a periodic array of holes over a graphene material and patterning the periodic array of holes into the graphene material. The etch mask comprises a pattern-defining block copolymer layer, and can optionally also comprise a wetting layer and a neutral layer. The nanoperforated graphene material can consist of a single sheet of graphene or a plurality of graphene sheets.
Photopatternable Imaging Layers For Controlling Block Copolymer Microdomain Orientation
The present invention provides structures including a substrate, a crosslinked polymer film disposed over the substrate, and a patterned diblock copolymer film disposed over the crosslinked polymer film. The crosslinked polymer comprises a random copolymer polymerized from a first monomer, a second monomer, and a photo-crosslinkable and/or thermally crosslinkable third monomer, including epoxy-functional or acrylyol-functional monomers. Also disclosed are methods for forming the structures.
Substrate Independent Copolymers For Biofunctionalization
The present invention provides crosslinked epoxy-functional copolymer films and microarrays built from the crosslinked epoxy-functional copolymer films. Microarrays incorporating the copolymers include a substrate on which a film of the crosslinked epoxy-functional copolymer is disposed and target molecules bound to the copolymer film. The crosslinked polymer films are well-suited for use as scaffolds for target molecules in microarrays because they provide a high density of binding sites for the target molecules, are mechanically stable, and may be coated onto a wide range of substrates.
Provided are novel polymer brushes that may be used in underlying buffer or imaging layers for block copolymer lithography. The novel polymer brushes include X-A-b-B and X-A-b-C block copolymer brushes, with X an anchoring group, the A block a lithographically sensitive polymer, and the C block a random copolymer. According to various embodiments; polymer block brushes for neutral and preferential layers are provided; the neutral layers non-preferential to the overlying block copolymer and the preferential layers preferential to a block of the overlying block copolymer. Also provided are novel methods of patterning polymer block brush layers as well as polymer block brush buffer and imaging layers that are directly patternable by e-beam, deep UV, extreme UV, X-ray or other lithographic methods.
Methods Of Fabricating Large-Area, Semiconducting Nanoperforated Graphene Materials
Michael S. Arnold - Middleton WI, US Padma Gopalan - Madison WI, US Nathaniel S. Safron - Madison WI, US
International Classification:
C23F 1/02
US Classification:
1563453
Abstract:
Methods for forming a nanoperforated graphene material are provided. The methods comprise forming an etch mask defining a periodic array of holes over a graphene material and patterning the periodic array of holes into the graphene material. The etch mask comprises a pattern-defining block copolymer layer, and can optionally also comprise a wetting layer and a neutral layer. The nanoperforated graphene material can consist of a single sheet of graphene or a plurality of graphene sheets.
Nanostructured Graphene With Atomically-Smooth Edges
Methods of producing layers of patterned graphene with smooth edges are provided. The methods comprise the steps of fabricating a layer of crystalline graphene on a surface, wherein the layer of crystalline graphene has a crystallographically disordered edge, and decreasing the crystallographic disorder of the edge of the layer of crystalline graphene by heating the layer of crystalline graphene on the surface at an elevated temperature in a catalytic environment comprising carbon-containing molecules.
Barrier Guided Growth Of Microstructured And Nanostructured Graphene And Graphite
Michael S. Arnold - Middleton WI, US Padma Gopalan - Madison WI, US Nathaniel S. Safron - Madison WI, US
International Classification:
C30B 25/04 C01B 31/04
US Classification:
117 95, 977843
Abstract:
Methods for growing microstructured and nanostructured graphene by growing the microstructured and nanostructured graphene from the bottom-up directly in the desired pattern are provided. The graphene structures can be grown via chemical vapor deposition (CVD) on substrates that are partially covered by a patterned graphene growth barrier which guides the growth of the graphene.
Transfer Of Nanostructures Using Crosslinkable Copolymer Films
- Madison WI, US Robert Michael Jacobberger - Evanston IL, US Padma Gopalan - Madison WI, US Jonathan H. Dwyer - Madison WI, US
International Classification:
C01B 32/194 C09D 133/12
Abstract:
Methods of transferring nanostructures from a first substrate to another substrate using a copolymer polymerized from one or more non-crosslinking monomers and one or more comonomers bearing crosslinkable groups as a transfer medium are provided. Relative to a poly(methyl methacrylate) homopolymer, the crosslinkable copolymers bond more strongly to the first substrate and, as a result, are able to transfer even very narrow nanostructures between substrates with high transfer yields.